Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 12(11): 720-726, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37706539

RESUMO

Hematopoiesis is maintained by hematopoietic stem cells (HSCs) that replenish all blood lineages throughout life. It is well-established that the HSC pool is functionally heterogeneous consisting of cells differing in longevity, self-renewal ability, cell proliferation, and lineage differentiation. Although HSCs can be identified through the Lineage-Sca-1+c-Kit+CD48-CD34-CD150+ immunophenotype, the cell surface marker combination does not permit absolute purification of functional HSCs with long-term reconstituting ability. Therefore, prospective isolation of long-term HSCs is crucial for mechanistic understanding of the biological functions of HSCs and for resolving functional heterogeneity within the HSC population. Here, we show that the combination of CD229 and CD49b cell surface markers within the phenotypic HSC compartment identifies a subset of multipotent progenitor (MPP) cells with high proliferative activity and short-term reconstituting ability. Thus, the addition of CD229 and CD49b to conventional HSC markers permits prospective isolation of functional HSCs by distinguishing MPPs in the HSC compartment.


Assuntos
Células-Tronco Hematopoéticas , Integrina alfa2 , Animais , Camundongos , Integrina alfa2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes , Diferenciação Celular , Hematopoese , Camundongos Endogâmicos C57BL
2.
Stem Cell Reports ; 17(7): 1546-1560, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35714596

RESUMO

Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b- HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b- and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms.


Assuntos
Células-Tronco Hematopoéticas , Integrina alfa2 , Diferenciação Celular/genética , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Multipotentes
3.
Front Immunol ; 13: 880668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603175

RESUMO

The development of B cells relies on an intricate network of transcription factors critical for developmental progression and lineage commitment. In the B cell developmental trajectory, a temporal switch from predominant Foxo3 to Foxo1 expression occurs at the CLP stage. Utilizing VAV-iCre mediated conditional deletion, we found that the loss of FOXO3 impaired B cell development from LMPP down to B cell precursors, while the loss of FOXO1 impaired B cell commitment and resulted in a complete developmental block at the CD25 negative proB cell stage. Strikingly, the combined loss of FOXO1 and FOXO3 resulted in the failure to restrict the myeloid potential of CLPs and the complete loss of the B cell lineage. This is underpinned by the failure to enforce the early B-lineage gene regulatory circuitry upon a predominantly pre-established open chromatin landscape. Altogether, this demonstrates that FOXO3 and FOXO1 cooperatively govern early lineage restriction and initiation of B-lineage commitment in CLPs.


Assuntos
Hematopoese , Células Progenitoras Linfoides , Linfócitos B/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hematopoese/genética , Células Progenitoras Linfoides/metabolismo , Células Precursoras de Linfócitos B/metabolismo
4.
Cell Rep ; 16(12): 3181-3194, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653684

RESUMO

B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.


Assuntos
Proteínas de Transporte/genética , Senescência Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Proteínas Nucleares/genética , Animais , Quinase 6 Dependente de Ciclina/biossíntese , Proteínas de Ligação a DNA , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA