Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(5): 1119-1125, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563103

RESUMO

Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.


Assuntos
6-Fitase , Estabilidade Enzimática , Temperatura Alta , 6-Fitase/genética , 6-Fitase/metabolismo , 6-Fitase/química , Concentração de Íons de Hidrogênio , Mutação , Pichia/genética , Pichia/metabolismo , Temperatura , Ração Animal/análise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
2.
J Microbiol Biotechnol ; 32(2): 187-194, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949752

RESUMO

Two α-L-arabinofuranosidases (BfdABF1 and BfdABF3) and a ß-D-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25°C. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-L-arabinofuranosyl-xylobiose (A3X), and 23-α-Larabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-L-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-L-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50°C, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of L-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55°C, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceulloseutilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce L-arabinose and D-xylose from various AOS, XOS, and AXOS.


Assuntos
Bifidobacterium/enzimologia , Glicosídeo Hidrolases , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/química , Especificidade por Substrato , Xilanos , Xilosidases
3.
J Microbiol ; 55(2): 147-152, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120195

RESUMO

γ-Glutamyltranspeptidase (GGT) catalyzes the cleavage of γ-glutamyl compounds and the transfer of γ-glutamyl moiety to water or to amino acid/peptide acceptors. GGT can be utilized for the generation of γ-glutamyl peptides or glutamic acid, which are used as food taste enhancers. In the present study, Bacillus amyloliquefaciens SMB469 with high GGT activity was isolated from Doenjang, a traditional fermented soy food of Korea. The gene encoding GGT from B. amyloliquefaciens SMB469 (BaGGT469) was cloned from the isolate, and heterologously expressed in E. coli and B. subtilis. For comparison, three additional GGT genes were cloned from B. subtilis 168, B. licheniformis DSM 13, and B. amyloliquefaciens FZB42. The BaGGT469 protein was composed of 591 amino acids. The final protein comprises two separate polypeptide chains of 45.7 and 19.7 kDa, generated via autocatalytic cleavage. The specific activity of BaGGT469 was determined to be 17.8 U/mg with γ-L-glutamyl-p-nitroanilide as the substrate and diglycine as the acceptor. GGTs from B. amyloliquefaciens showed 1.4- and 1.7-fold higher transpeptidase activities than those from B. subtilis and B. licheniformis, respectively. Especially, recombinant B. subtilis expressing BaGGT469 demonstrated 11- and 23-fold higher GGT activity than recombinant E. coli and the native B. amyloliquefaciens, respectively, did. These results suggest that BaGGT469 can be utilized for the enzymatic production of various γ-glutamyl compounds.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Sequência de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Bacillus amyloliquefaciens/metabolismo , Clonagem Molecular , Escherichia coli/genética , Fermentação , Glicilglicina , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , República da Coreia , Alimentos de Soja/microbiologia , Especificidade por Substrato , gama-Glutamiltransferase/química , gama-Glutamiltransferase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA