Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398972

RESUMO

Laser-based additive manufacturing processes, particularly direct energy deposition (DED), have gained prominence for fabricating complex, functionally graded, or customized parts. DED employs a high-powered heat source to melt metallic powder or wire, enabling precise control of grain structures and the production of high-strength objects. However, common defects, such as a lack of fusion and pores between layers or beads, can compromise the mechanical properties of the printed components. This study focuses on investigating the recurrent causes of pore defects in the powder-fed DED process, with a specific emphasis on the influence of oxidized metal powders. This research explores the impact of intentionally oxidizing metal powders of hot work tool steel H13 by exposing them to regulated humidity and temperature conditions. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy results demonstrate the clumping of powders and the deposition of iron oxides in the oxidized powders at elevated temperatures (70 °C for 72 h). Multi-layered depositions of the oxidized H13 powders on STD61 substrate do not show significant differences in cross sections among specimens, suggesting that oxidation does not visibly form large pores. However, fine pores, detected through CT scanning, are observed in depositions of oxidized powders at higher temperatures. These fine pores, typically less than 250 µm in diameter, are irregularly distributed throughout the deposition, indicating a potential degradation in mechanical properties. The findings highlight the need for careful consideration of oxidation effects in optimizing process parameters for enhanced additive manufacturing quality.

2.
Micromachines (Basel) ; 14(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421105

RESUMO

High thermal conductivity steel (HTCS-150) is deposited onto non-heat-treated AISI H13 (N-H13) via powder-fed direct energy deposition (DED) based on the response surface methodology (RSM) to enhance the mechanical properties and thermal conductivity of N-H13, which is generally used as a hot-work tool steel. The main process parameters of the powder-fed DED are priorly optimized to minimize defects in the deposited regions and, therefore, to obtain homogeneous material properties. The deposited HTCS-150 is comprehensively evaluated through hardness, tensile, and wear tests at the different temperatures of 25, 200, 400, 600, and 800 °C. Compared to conventionally heat-treated (quenched and tempered) H13 (HT-H13), the hardness of the additively manufactured HTCS-150 slightly increases at 25 °C, whereas it does not show any significant difference above 200 °C. However, the HTCS-150 deposited on N-H13 shows a lower ultimate tensile strength and elongation than HT-H13 at all tested temperatures, and the deposition of the HTCS-150 on N-H13 enhances the ultimate tensile strength of N-H13. While the HTCS-150 does not show a significant difference in the wear rate below 400 °C compared to HT-H13, it shows a lower wear rate above 600 °C. The HTCS-150 reveals a higher thermal conductivity than the HT-H13 below 600 °C, whereas the behavior is reversed at 800 °C. The results suggest that the HTCS-150 additively manufactured via powder-fed direct energy deposition can enhance the mechanical and thermal properties of N-H13, including hardness, tensile strength, wear resistance, and thermal conductivity in a wide range of temperatures, often superior to those of HT-H13.

3.
Appl Biochem Biotechnol ; 195(10): 6321-6333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36862333

RESUMO

It has been optimized thermal acid hydrolytic pretreatment and enzymatic saccharification (Es) in flask culture of Undaria pinnatifida seaweed, which is a prebiotic. The optimal hydrolytic conditions were a slurry content of 8% (w/v), 180 mM H2SO4, and 121°C for 30 min. Es using Celluclast 1.5 L at 8 U/mL produced 2.7 g/L glucose with an efficiency of 96.2%. The concentration of fucose (a prebiotic) was 0.48 g/L after pretreatment and saccharification. The fucose concentration decreased slightly during fermentation. Monosodium glutamate (MSG) (3%, w/v) and pyridoxal 5'-phosphate (PLP) (30 µM) were added to enhance gamma-aminobutyric acid (GABA) production. To further improve the consumption of mixed monosaccharides, adaptation of Lactobacillus brevis KCL010 to high concentrations of mannitol improved the synbiotic fermentation efficiency of U. pinnatifida hydrolysates.


Assuntos
Levilactobacillus brevis , Probióticos , Simbióticos , Undaria , Fermentação , Prebióticos , Fucose , Ácido gama-Aminobutírico
4.
Bioresour Technol ; 100(23): 6107-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19608415

RESUMO

Recent studies suggest that olive leaf is a significant source of bioactive phenolic compounds comparable to olive oil and fruits. Identifying appropriate extraction methods is thus an important step to increase the yield of such bioactive components from olive leaf, which is otherwise agricultural waste. The present study evaluates phenolic contents and compositions of olive leaf extracted by several solvent methods and to further establish their antioxidant activities using various radical scavenging systems. Total flavonoid and phenolic contents were significantly higher in the 80% ethanol extract, butanol, and ethylacetate fractions than hexane, chloroform and water fractions (p<0.05). Oleuropein was identified as a major phenolic compound with considerable contents in these major three fractions and the extract that correlated with their higher antioxidant and radical scavenging. These results indicate that olive leaf contains significant amounts of oleuropein and phenolics, important factors for antioxidant capacity, which can be substantially modified by different extraction methods.


Assuntos
Antioxidantes/metabolismo , Olea/metabolismo , Fenóis/química , Extratos Vegetais/farmacologia , Agricultura/métodos , Antioxidantes/química , Clorofórmio/química , Sequestradores de Radicais Livres , Hexanos/química , Resíduos Industriais , Glucosídeos Iridoides , Iridoides , Ácido Linoleico/química , Oxigênio/química , Peróxidos/química , Fenol , Piranos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA