Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904654

RESUMO

Time-division multiple access (TDMA)-based medium access control (MAC) protocol has been widely used for avoiding access conflicts in wireless multi-hop ad hoc networks, where the time synchronization among wireless nodes is essential. In this paper, we propose a novel time synchronization protocol for TDMA-based cooperative multi-hop wireless ad hoc networks, which are also called barrage relay networks (BRNs). The proposed time synchronization protocol is based on cooperative relay transmissions to send time synchronization messages. We also propose a network time reference (NTR) selection technique for improving the convergence time and average time error. In the proposed NTR selection technique, each node overhears the user identifier (UID) of other nodes, hop count (HC) from them to itself, and network degree, which denotes the number of 1-hop neighbor nodes. Then, the node with the minimum HC from all other nodes is selected as the NTR node. If there are multiple nodes with the minimum HC, the node with the larger degree is selected as the NTR node. To the best of our knowledge, the proposed time synchronization protocol with the NTR selection is introduced for the first time for cooperative (barrage) relay networks in this paper. Through computer simulations, we validate the proposed time synchronization protocol in terms of the average time error under various practical network scenarios. Furthermore, we also compare the performance of the proposed protocol with the conventional time synchronization methods. It is shown that the proposed protocol significantly outperforms the conventional methods in terms of the average time error and convergence time. The proposed protocol is shown to be more robust against packet loss as well.

2.
Sensors (Basel) ; 21(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669520

RESUMO

Recently, reconfigurable intelligent surfaces (RISs) have received much interest from both academia and industry due to their flexibility and cost-effectiveness in adjusting the phase and amplitude of wireless signals with low-cost passive reflecting elements. In particular, many RIS-aided techniques have been proposed to improve both data rate and energy efficiency for 6G wireless communication systems. In this paper, we propose a novel RIS-based channel randomization (RCR) technique for improving physical-layer security (PLS) for a time-division duplex (TDD) downlink cellular wire-tap network which consists of a single base station (BS) with multiple antennas, multiple legitimate pieces of user equipment (UE), multiple eavesdroppers (EVEs), and multiple RISs. We assume that only a line-of-sight (LOS) channel exists among the BS, the RISs, and the UE due to propagation characteristics of tera-hertz (THz) spectrum bands that may be used in 6G wireless communication systems. In the proposed technique, each RIS first pseudo-randomly generates multiple reflection matrices and utilizes them for both pilot signal duration (PSD) in uplink and data transmission duration (DTD) in downlink. Then, the BS estimates wireless channels of UE with reflection matrices of all RISs and selects the UE that has the best secrecy rate for each reflection matrix generated. It is shown herein that the proposed technique outperforms the conventional techniques in terms of achievable secrecy rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA