Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
3.
Nature ; 628(8009): 872-877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570682

RESUMO

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or ß (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.


Assuntos
Acidemia Propiônica , Propionil-Coenzima A Carboxilase , RNA Mensageiro , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Administração Intravenosa , Relação Dose-Resposta a Droga , Acidemia Propiônica/genética , Acidemia Propiônica/terapia , Propionil-Coenzima A Carboxilase/genética , Propionil-Coenzima A Carboxilase/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
5.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553553

RESUMO

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Assuntos
Paralisia Cerebral , Variações do Número de Cópias de DNA , Humanos , Criança , Variações do Número de Cópias de DNA/genética , Paralisia Cerebral/genética , Mutação , Sequenciamento Completo do Genoma , Genômica
6.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
7.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216926

RESUMO

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Assuntos
Erros Inatos do Metabolismo Lipídico , Avaliação de Resultados em Cuidados de Saúde , Criança , Humanos , Acil-CoA Desidrogenase , Canadá , Estudos Prospectivos , Pré-Escolar
8.
Genet Med ; 26(2): 101013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924258

RESUMO

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genética
9.
Nat Metab ; 5(10): 1685-1690, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770764

RESUMO

Despite available treatment options, many patients with phenylketonuria (PKU) cannot achieve target plasma phenylalanine (Phe) levels1. We previously modified Escherichia coli Nissle 1917 to metabolize Phe in the gut after oral administration (SYNB1618) and designed a second strain (SYNB1934) with enhanced activity of phenylalanine ammonia lyase2,3. In a 14-day open-label dose-escalation study (Synpheny-1, NCT04534842 ), we test a primary endpoint of change from baseline in labeled Phe (D5-Phe AUC0-24; D5-Phe area under the curve (AUC) over 24 hours after D5-Phe administration) in plasma after D5-Phe challenge in adult participants with screening Phe of greater than 600 µM. Secondary endpoints were the change from baseline in fasting plasma Phe and the incidence of treatment-emergent adverse events. A total of 20 participants (ten male and ten female) were enrolled and 15 completed the study treatment. Here, we show that both strains lower Phe levels in participants with PKU: D5-Phe AUC0-24 was reduced by 43% from baseline with SYNB1934 and by 34% from baseline with SYNB1618. SYNB1934 led to a decrease in fasting plasma Phe of 40% (95% CI, -52, -24). There were no serious adverse events or infections. Four participants discontinued because of adverse events, and one withdrew during the baseline period. We show that synthetic biotics can metabolize Phe in the gut, lower post-prandial plasma Phe levels and lower fasting plasma Phe in patients with PKU.


Assuntos
Fenilalanina , Fenilcetonúrias , Adulto , Humanos , Masculino , Feminino , Fenilalanina/uso terapêutico , Fenilcetonúrias/tratamento farmacológico , Fenilalanina Amônia-Liase/uso terapêutico , Administração Oral , Escherichia coli
11.
Genet Med ; 25(9): 100897, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37191094

RESUMO

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Leucoencefalite Hemorrágica Aguda , Criança , Humanos , Leucoencefalite Hemorrágica Aguda/diagnóstico , Leucoencefalite Hemorrágica Aguda/genética , Inflamassomos , Encefalopatias/genética , Fatores de Transcrição , Ribonucleases , Proteínas de Transporte
12.
HGG Adv ; 4(2): 100182, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36845668

RESUMO

Phosphoenolpyruvate carboxykinase (PCK) plays a critical role in cytosolic gluconeogenesis, and defects in PCK1 cause a fasting-aggravated metabolic disease with hypoglycemia and lactic acidosis. However, there are two genes encoding PCK, and the role of the mitochondrial resident PCK (encoded by PCK2) is unclear, since gluconeogenesis is cytosolic. We identified three patients in two families with biallelic variants in PCK2. One has compound heterozygous variants (p.Ser23Ter/p.Pro170Leu), and the other two (siblings) have homozygous p.Arg193Ter variation. All three patients have weakness and abnormal gait, an absence of PCK2 protein, and profound reduction in PCK2 activity in fibroblasts, but no obvious metabolic phenotype. Nerve conduction studies showed reduced conduction velocities with temporal dispersion and conduction block compatible with a demyelinating peripheral neuropathy. To validate the association between PCK2 variants and clinical disease, we generated a mouse knockout model of PCK2 deficiency. The animals present abnormal nerve conduction studies and peripheral nerve pathology, corroborating the human phenotype. In total, we conclude that biallelic variants in PCK2 cause a neurogenetic disorder featuring abnormal gait and peripheral neuropathy.


Assuntos
Doenças do Sistema Nervoso Periférico , Fosfoenolpiruvato Carboxiquinase (ATP) , Camundongos , Animais , Humanos , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Gluconeogênese/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Doenças do Sistema Nervoso Periférico/genética
13.
Nat Commun ; 13(1): 6463, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309498

RESUMO

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/genética , Canadá/epidemiologia , Genoma , Herança Multifatorial/genética , Sequenciamento Completo do Genoma , Predisposição Genética para Doença
14.
Neurohospitalist ; 12(1): 67-73, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34950389

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis and stroke like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder with recurrent non-arterial distribution stroke-like episodes (SLEs). A 17 yr old boy with MELAS (m.3243A>G tRNALeu(UUR)) presented with SLEs at ages 8 and 10 yrs. At 11 yrs, he suffered a third SLE involving left parietotemporal lobes with dense right hemiplegia and aphasia persistent for 1 week without improvement. On high dose IV L-Arginine (L-Arg) (0.5 g/kg/day divided TID) he had rapid recovery within 48 hours and was rapidly weaned. With emesis of oral L-Arg, his SLE recurred and he was again treated with high dose IV L-Arg with similar rapid recovery and discharged on a slow wean over 6 wks to 0.1 g/kg/day. On maintenance L-Arg he suffered only 2 SLEs at ages 13 and 16 yrs; both resolved rapidly with high dose IV L-Arg without recurrence during a slow wean to maintenance. His phenotype included seizures, ptosis, ophthalmoplegia, facial diplegia, sensorineural hearing loss, ataxia, myopathy, exercise intolerance, peripheral sensorimotor neuropathy, hypertrophic cardiomyopathy, hypertension, and failure to thrive. At 16 yrs he developed end-stage renal disease, due to MELAS, requiring hemodialysis and at 17 yrs he underwent cadaveric renal transplantation. His peri-operative protocol included strict maintenance of perfusion, oxygenation, normothermia, biochemical homeostasis and serum arginine concentrations during which time there were no neurologic decompensations. He was transitioned to oral L-citrulline maintenance therapy which maintained higher serum arginine concentrations with better tolerance. He had no SLEs or seizures in the ensuing 2 yrs.

15.
Eur J Hum Genet ; 29(11): 1719-1724, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34483339

RESUMO

Mitochondrial disorders are a heterogeneous group of rare, degenerative multisystem disorders affecting the cell's core bioenergetic and signalling functions. Spontaneous improvement is rare. We describe a novel neonatal-onset mitochondriopathy in three infants with failure to thrive, hyperlactatemia, hyperammonemia, and apparent clinical resolution before 18 months. Exome sequencing showed all three probands to be identically heterozygous for a recurrent de novo substitution, c.620G>A [p.(Arg207His)] in ATP5F1A, encoding the α-subunit of complex V. Patient-derived fibroblasts exhibited multiple deficits in complex V function and expression in vitro. Structural modelling predicts the observed substitution to create an abnormal region of negative charge on ATP5F1A's ß-subunit-interacting surface, adjacent to the nearby ß subunit's active site. This disorder, which presents with life-threatening neonatal manifestations, appears to follow a remitting course; the long-term prognosis remains unknown.


Assuntos
Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Domínio Catalítico , Células Cultivadas , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Fenótipo
16.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731350

RESUMO

The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organellar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an intermediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable nuclear component.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Núcleo Celular/genética , DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla , Heteroplasmia , Humanos , Doenças Mitocondriais/genética
17.
Sci Rep ; 11(1): 4523, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633238

RESUMO

Mitochondrial health plays a crucial role in human brain development and diseases. However, the evaluation of mitochondrial health in the brain is not incorporated into clinical practice due to ethical and logistical concerns. As a result, the development of targeted mitochondrial therapeutics remains a significant challenge due to the lack of appropriate patient-derived brain tissues. To address these unmet needs, we developed cerebral organoids (COs) from induced pluripotent stem cells (iPSCs) derived from human peripheral blood mononuclear cells (PBMCs) and monitored mitochondrial health from the primary, reprogrammed and differentiated stages. Our results show preserved mitochondrial genetics, function and treatment responses across PBMCs to iPSCs to COs, and measurable neuronal activity in the COs. We expect our approach will serve as a model for more widespread evaluation of mitochondrial health relevant to a wide range of human diseases using readily accessible patient peripheral (PBMCs) and stem-cell derived brain tissue samples.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Neurogênese , Biomarcadores , Técnicas de Cultura de Células , Reprogramação Celular/genética , Fenômenos Eletrofisiológicos , Imunofluorescência , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Organoides , Sinapses/fisiologia , Transmissão Sináptica
18.
Genet Med ; 23(5): 900-908, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33473208

RESUMO

PURPOSE: Neurodevelopmental disabilities are common and genetically heterogeneous. We identified a homozygous variant in the gene encoding UFM1-specific peptidase 2 (UFSP2), which participates in the UFMylation pathway of protein modification. UFSP2 variants are implicated in autosomal dominant skeletal dysplasias, but not neurodevelopmental disorders. Homozygosity for the variant occurred in eight children from four South Asian families with neurodevelopmental delay and epilepsy. We describe the clinical consequences of this variant and its effect on UFMylation. METHODS: Exome sequencing was used to detect potentially pathogenic variants and identify shared regions of homozygosity. Immunoblotting assessed protein expression and post-translational modifications in patient-derived fibroblasts. RESULTS: The variant (c.344T>A; p.V115E) is rare and alters a conserved residue in UFSP2. Immunoblotting in patient-derived fibroblasts revealed reduced UFSP2 abundance and increased abundance of UFMylated targets, indicating the variant may impair de-UFMylation rather than UFMylation. Reconstituting patient-derived fibroblasts with wild-type UFSP2 reduced UFMylation marks. Analysis of UFSP2's structure indicated that variants observed in skeletal disorders localize to the catalytic domain, whereas V115 resides in an N-terminal domain possibly involved in substrate binding. CONCLUSION: Different UFSP2 variants cause markedly different diseases, with homozygosity for V115E causing a severe syndrome of neurodevelopmental disability and epilepsy.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Osteocondrodisplasias , Criança , Epilepsia/genética , Homozigoto , Humanos , Transtornos do Neurodesenvolvimento/genética , Sequenciamento do Exoma
19.
Doc Ophthalmol ; 142(1): 111-118, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32567010

RESUMO

OBJECTIVE: To report the clinical and novel electrophysiological features in a child with POLG-related sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). METHODS: The proband, a male child of Indian descent, underwent serial systemic and ophthalmological evaluations from birth until 14 years of age. Eye examinations included visual acuity and extraocular movement assessments, fundus photography, spectral domain optical coherence tomography and full-field electroretinography (ERG). Detailed genetic testing was also performed. RESULTS: The child carried a homozygous mutation in POLG (c.911T > G/p.Leu304Arg) and manifested systemic features such as seizures, headaches, areflexia, hypotonia, myopathy and vomiting. The child's distance visual acuity was 0.50 and 0.40 LogMAR in the right and left eyes, respectively. Bilateral ophthalmoplegia and ptosis were observed at 5 years of age. The dark-adapted (DA) ERG responses to 2.29 cd s m-2 and 7.6 cd s m-2 stimuli showed a markedly reduced b/a ratio; an electronegative configuration was noted to a DA 7.6 ERG. CONCLUSION: This is the first documented case of an electronegative ERG in a POLG-related disorder consistent with generalized rod ON-bipolar dysfunction. The rest of the proband's systemic and ophthalmological features were consistent with SANDO but some features overlapped with other POLG-related disorders such as Alpers-Huttenlocher syndrome and autosomal dominant progressive external ophthalmoplegia demonstrating the wide phenotypic overlap expected due to POLG mutations.


Assuntos
Doenças Retinianas , Células Fotorreceptoras Retinianas Bastonetes/patologia , Adolescente , DNA Polimerase gama/genética , Eletrorretinografia , Humanos , Masculino , Mutação , Tomografia de Coerência Óptica
20.
Hum Mutat ; 41(12): 2028-2057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906214

RESUMO

Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Guias como Assunto , Sociedades Científicas , Bases de Dados Genéticas , Árvores de Decisões , Haplótipos/genética , Humanos , Fenótipo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA