Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 47(1): 21-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753811

RESUMO

This study aimed to evaluate the pharmacokinetics (PK) of tranexamic acid (TXA) in horses and estimate its irrelevant plasma and urine concentrations using the pharmacokinetic/pharmacodynamic (PK/PD) approach by applying the Pierre-Louis Toutain model. TXA was intravenously administered to eight thoroughbred mares, and plasma and urine TXA concentrations were quantified by liquid chromatography/tandem mass spectrometry. The quantified data were used to calculate the PK parameters of TXA in horses. The plasma elimination curves were best-fitted to a three-compartment model. Using the Toutain model approach, irrelevant plasma and urine TXA concentrations were estimated to be 0.0206 and 0.997 µg/mL, respectively. The typical values of clearance, steady-state volume of distribution, and steady-state urine-to-plasma ratio were 0.080 L/kg/h, 0.86 L/kg, and 49.0, respectively. The obtained irrelevant concentrations will be useful for establishing relevant regulatory screening limits for effective control of TXA use in horse racing and equestrian sports.


Assuntos
Líquidos Corporais , Esportes , Ácido Tranexâmico , Cavalos , Animais , Feminino , Ácido Tranexâmico/farmacocinética , Ácido Tranexâmico/uso terapêutico , Cromatografia Líquida/veterinária
2.
J Anal Toxicol ; 47(7): 623-631, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37632695

RESUMO

Vadadustat is a newly launched hypoxia-inducible factor stabilizer with anti-anemia and erythropoietic effects; however, its use in horses is expressly forbidden in both racing and equestrian competitions. Following our previous report on the pharmacokinetic study of vadadustat in horse plasma and urine, a long-term longitudinal analysis of vadadustat in horse hair after nasoesophageal administration (3 g/day for 3 days) to three thoroughbred mares is described in this study. Our main objective is to further extend the detection period of vadadustat for the purpose of doping control. Three bunches of mane hair from each horse were collected at 0 (pre), 1, 2, 3 and 6 month(s) post-administration. These hair samples were each cut into 2-cm segments and pulverized after decontamination of hair samples. The analyte in the powdered hair samples was extracted with liquid-liquid extraction followed by further purification by solid-phase extraction with strong anion exchange columns. The amount of vadadustat incorporated into the hair was quantified with a newly developed and validated method using liquid chromatography-high-resolution mass spectrometry. Our results show that vadadustat was confirmed in all post-administration hair samples, but its metabolites were not present. Thus, the detection window for vadadustat could be successfully extended up to 6 months post-administration. Interestingly, the 2-cm segmental analysis revealed that the tip of the drug band in the hair shifted along with the hair shafts in correspondence with the average hair growth rate (∼2.5 cm/month) but gradually diffused more widely from 2 cm at 1 month post-administration to up to 14 cm at 6 months post-administration. However, the loss in the total amount of vadadustat in hair over time was observed to most likely be due to the degradation of vadadustat. These findings will be useful for the control of abuse and/or misuse of vadadustat and the interpretation of positive doping cases.


Assuntos
Líquidos Corporais , Glicina , Animais , Feminino , Cavalos , Cromatografia Líquida , Cabelo
3.
J Pharm Biomed Anal ; 235: 115600, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37516063

RESUMO

Daprodustat is a hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitor and is used as an erythropoiesis stimulant for the treatment of anemia in humans. In general, administering daprodustat to horses will result in a lifetime ban from both equestrian sports and horseracing by the International Federation of Horseracing Authorities and the Fédération Équestre Internationale, respectively. To control the misuse/abuse of daprodustat, we conducted nasoesophageal administration of daprodustat (100 mg/day for 3 days) to three thoroughbred mares and the post-administration hair samples collected from the three horses over 6 months were analyzed to demonstrate the potential longer-term detection of daprodustat and its metabolites in hair compared with the detection times of daprodustat of 1 and 2 weeks in plasma and urine respectively. The results of the quantitative 2-cm segmental analysis showed that daprodustat was primarily localized in the proximal region (0-2 cm) at 0.375-0.463 pg/mg at 1 month post-administration. These drug bands were gradually spread out along the hair shaft at a rate consistent with the reported growth rate of horse mane hair (approximately 2.5 cm/month) over the following 6 months. In addition, to attain deeper insight into the mechanism of drug incorporation into hair, a total of 11 relevant parameters, including the actual PK parameters and simulated physicochemical and biopharmaceutical parameters for three HIF stabilizers (i.e., daprodustat, vadadustat, and IOX4), were investigated after normalization of the z-scores of all these parameters. Multiple regression analysis indicated that the major factors contributing to the incorporation of the three drugs into hair were their maximum plasma concentrations and lipophilicities, strongly suggesting that the three HIF stabilizers permeated from the bloodstream into the hair bulb via passive transfer with concentration gradients. This work is the first reported evidence showing the incorporation of HIF stabilizers into hair via passive transfer. In addition, cross-species comparison of drug incorporations into hair between daprodustat in horse and roxadustat in human was made in order to have a better understanding of the interactive interpretations about the analysis results obtained from different species. The above findings are not only useful and beneficial for the purpose of doping control but also provide a better understanding of the mechanism of drug incorporation into horse hair.


Assuntos
Anemia , Barbitúricos , Humanos , Cavalos , Animais , Feminino , Barbitúricos/análise , Barbitúricos/uso terapêutico , Anemia/tratamento farmacológico , Cabelo/química , Hipóxia/tratamento farmacológico , Prolina Dioxigenases do Fator Induzível por Hipóxia/análise , Prolina Dioxigenases do Fator Induzível por Hipóxia/uso terapêutico
4.
Anal Bioanal Chem ; 414(28): 8125-8142, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181513

RESUMO

In drug metabolism studies in horses, non-targeted analysis by means of liquid chromatography coupled with high-resolution mass spectrometry with data-dependent acquisition (DDA) has recently become increasingly popular for rapid identification of potential biomarkers in post-administration biological samples. However, the most commonly encountered problem is the presence of highly abundant interfering components that co-elute with the target substances, especially if the concentrations of these substances are relatively low. In this study, we evaluated the possibility of expanding DDA coverage for the identification of drug metabolites by applying intelligently generated exclusion lists (ELs) consisting of a set of chemical backgrounds and endogenous substances. Daprodustat was used as a model compound because of its relatively lower administration dose (100 mg) compared to other hypoxia-inducible factor stabilizers and the high demand in the detection sensitivity of its metabolites at the anticipated lower concentrations. It was found that the entire DDA process could efficiently identify both major and minor metabolites (flagged beyond the pre-set DDA threshold) in a single run after applying the ELs to exclude 67.7-99.0% of the interfering peaks, resulting in a much higher chance of triggering DDA to cover the analytes of interest. This approach successfully identified 21 metabolites of daprodustat and then established the metabolic pathway. It was concluded that the use of this generic intelligent "DDA + EL" approach for non-targeted analysis is a powerful tool for the discovery of unknown metabolites, even in complex plasma and urine matrices in the context of doping control.


Assuntos
Dopagem Esportivo , Animais , Cromatografia Líquida/métodos , Cavalos , Espectrometria de Massas/métodos , Preparações Farmacêuticas , Detecção do Abuso de Substâncias/métodos
5.
Curr Drug Metab ; 23(10): 850-865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017833

RESUMO

BACKGROUND: Vadadustat, a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, is a substance which carries a lifetime ban in both horse racing and equestrian competition. A comprehensive metabolic study of vadadustat in horses has not been previously reported. OBJECTIVE: Metabolism and elimination profiles of vadadustat in equine plasma and urine were studied for the purpose of doping control. METHODS: A nasoesophageal administration of vadadustat (3 g/day for 3 days) was conducted on three thoroughbred mares. Potential metabolites were comprehensively detected by differential analysis of full-scan mass spectral data obtained from both in vitro studies with liver homogenates and post-administration samples using liquid chromatography high-resolution mass spectrometry. The identities of metabolites were further substantiated by product ion scans. Quantification methods were developed and validated for the establishment of the excretion profiles of the total vadadustat (free and conjugates) in plasma and urine. RESULTS: A total of 23 in vivo and 14 in vitro metabolites (12 in common) were identified after comprehensive analysis. We found that vadadustat was mainly excreted into urine as the parent drug together with some minor conjugated metabolites. The elimination profiles of total vadadustat in post-administration plasma and urine were successfully established by using quantification methods equipped with alkaline hydrolysis for cleavage of conjugates such as methylated vadadustat, vadadustat glucuronide, and vadadustat glucoside. CONCLUSION: Based on our study, for effective control of the misuse or abuse of vadadustat in horses, total vadadustat could successfully be detected for up to two weeks after administration in plasma and urine.


Assuntos
Glicina , Fígado , Cavalos , Animais , Feminino , Espectrometria de Massas , Cromatografia Líquida/métodos , Glicina/metabolismo , Fígado/metabolismo
6.
Drug Test Anal ; 14(7): 1244-1254, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35195358

RESUMO

IOX4, a hypoxia-inducible factor stabilizer, is classified as a banned substance for horses in both horse racing and equestrian sports. We recently reported the pharmacokinetic profiles of IOX4 in horse plasma and urine and also identified potential monitoring targets for the doping control purpose. In this study, a long-term longitudinal analysis of IOX4 in horse hair after a nasoesophageal administration of IOX4 (500 mg/day for 3 days) to three thoroughbred mares is presented for the first time for controlling the abuse/misuse of IOX4. Six bunches of mane hair were collected at 0 (pre), 1, 2, 3, and 6 month(s) postadministration. Our results showed that the presence of IOX4 was identified in all postadministration horse hair samples, but no metabolite could be detected. The detection window for IOX4 could achieve up to 6-month postadministration (last sampling point) by monitoring IOX4 in hair. In order to evaluate the longitudinal distribution of IOX4 over 6 months, a validated quantification method of IOX4 in hair was developed for the analysis of the postadministration samples. Segmental analysis of 2-cm cut hair across the entire length of postadministration hair showed that IOX4 could be quantified up to the level of 1.84 pg/mg. In addition, it was found that the movement of the incorporated IOX4 band in the hair shaft over 6 months varied among the three horses due to individual variation and a significant diffusion of IOX4 band up to 10 cm width was also observed in the 6-month postadministration hair samples.


Assuntos
Dopagem Esportivo , Animais , Cromatografia Líquida/métodos , Dopagem Esportivo/prevenção & controle , Feminino , Cabelo/química , Cavalos , Espectrometria de Massas por Ionização por Electrospray , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
7.
Drug Test Anal ; 14(2): 233-251, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34612014

RESUMO

IOX4 is a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, which was developed for the treatment of anemia by exerting hematopoietic effects. The administration of HIF-PHD inhibitors such as IOX4 to horses is strictly prohibited by the International Federation of Horseracing Authorities and the Fédération Équestre Internationale. To the best of our knowledge, this is the first comprehensive metabolic study of IOX4 in horse plasma and urine after a nasoesophageal administration of IOX4 (500 mg/day, 3 days). A total of four metabolites (three mono-hydroxylated IOX4 and one IOX4 glucuronide) were detected from the in vitro study using homogenized horse liver. As for the in vivo study, post-administration plasma and urine samples were comprehensively analyzed with liquid chromatography/electrospray ionization high-resolution mass spectrometry to identify potential metabolites and determine their corresponding detection times. A total of 10 metabolites (including IOX4 glucuronide, IOX4 glucoside, O-desbutyl IOX4, O-desbutyl IOX4 glucuronide, four mono-hydroxylated IOX4, N-oxidized IOX4, and N-oxidized IOX4 glucoside) were found in urine and three metabolites (glucuronide, glucoside, and O-desbutyl) in plasma. Thus, the respective quantification methods for the detection of free and conjugated IOX4 metabolites in urine and plasma with a biphase enzymatic hydrolysis were developed and applied to post-administration samples for the establishment of elimination profiles of IOX4. The detection times of total IOX4 in urine and plasma could be successfully prolonged to at least 312 h.


Assuntos
Dopagem Esportivo , Espectrometria de Massas por Ionização por Electrospray , Animais , Cromatografia Líquida/métodos , Dopagem Esportivo/prevenção & controle , Glucuronídeos , Cavalos , Plasma , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA