Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 34(13): 1729-35, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24837366

RESUMO

The ShcA adaptor protein is engaged by numerous receptor tyrosine kinases (RTKs) in breast cancer cells. Once activated, RTKs phosphorylate three key tyrosine phosphorylation sites (Y239, Y240 and Y317) within ShcA that creates a docking site for Grb2/SOS and Grb2/Gab-containing complexes to activate the MAPK and AKT signaling pathways, respectively. We previously demonstrated that a tyrosine to phenylalanine substitution of the ShcA tyrosine phosphorylation sites (Shc3F-Y239/240/313F) significantly impairs breast tumor growth and angiogenesis in transgenic mouse models, in part, through the regulation of vascular endothelial growth factor (VEGF) production. Despite this fact, the underlying molecular mechanisms by which ShcA transduces pro-tumorigenic signals in breast cancer cells remain poorly defined. In this study, we demonstrate that ShcA-dependent activation of AKT, but not the RAS/MAPK pathway, induces VEGF production by bolstering VEGF mRNA translation. Accordingly, ShcA drives breast tumor growth and angiogenesis in vivo in a 4E-BP-dependent manner. These findings establish ShcA as a biological bridge that links AKT activation downstream of RTKs to cap-dependent VEGF mRNA translation in order to promote mammary tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias da Mama/irrigação sanguínea , Neovascularização Patológica/etiologia , Fosfoproteínas/fisiologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Proteínas de Ciclo Celular , Feminino , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , RNA Mensageiro/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src , Fator A de Crescimento do Endotélio Vascular/biossíntese
2.
Oncogene ; 34(16): 2032-42, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24909168

RESUMO

The progression of cancers from primary tumors to invasive and metastatic stages accounts for the overwhelming majority of cancer deaths. Understanding the molecular events which promote metastasis is thus critical in the clinic. Translational control is emerging as an important factor in tumorigenesis. The messenger RNA (mRNA) cap-binding protein eIF4E is an oncoprotein that has an important role in cancer initiation and progression. eIF4E must be phosphorylated to promote tumor development. However, the role of eIF4E phosphorylation in metastasis is not known. Here, we show that mice in which eukaryotic translation initiation factor 4E (eIF4E) cannot be phosphorylated are resistant to lung metastases in a mammary tumor model, and that cells isolated from these mice exhibit impaired invasion. We also demonstrate that transforming growth factor-beta (TGFß) induces eIF4E phosphorylation to promote the translation of Snail and Mmp-3 mRNAs, and the induction of epithelial-to-mesenchymal transition (EMT). Furthermore, we describe a new model wherein EMT induced by TGFß requires translational activation via the non-canonical TGFß signaling branch acting through eIF4E phosphorylation.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Iniciação 4E em Eucariotos/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Metaloproteinase 3 da Matriz/metabolismo , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica/genética , Fator de Iniciação 4E em Eucariotos/genética , Feminino , Neoplasias Pulmonares/genética , Neoplasias Mamárias Experimentais/metabolismo , Metaloproteinase 3 da Matriz/genética , Camundongos , Fosforilação , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
3.
Clin Transl Oncol ; 16(11): 937-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25060567

RESUMO

Breast cancers and most malignant tumors are composed of heterogeneous tumor cells both at genetic and morphological levels; intra-tumor heterogeneity can be one underlying cause of therapeutic resistance. Classical studies have focused on analyses of the relationship between primary tumors and metastatic dissemination, and on subclone evolution. However, it should be noted that tumor heterogeneity at the level of protein expression (proteomics) has not been yet studied in depth. The differences in protein expression also can play an important role in elucidating the relationship between intra-tumor heterogeneity and resistance to systemic therapy. In fact, in human tumors there is not always a homogeneous expression of many of the crucial factors involved in cell signaling, such as pMAPK, pAKt, pMTOR, even with constitutive oncogenic alterations upstream, such as HER2, PI3 K. Conversely, two of these factors, peIF4E and p4E-BP1, which are downstream, and control protein translation, show a diffuse and strong protein expression. In summary, most of cell signaling factors show a heterogeneous expression, regardless of oncogenic alterations. Tissue heterogeneity could be driven by local factors, including hypoxia. The fact that the phosphorylation of crucial proteins such as 4E-BP1 and eIF4E is observed homogeneously throughout most tumors and are druggable opens the chance to get real potential targets in cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Animais , Proteínas de Ciclo Celular , Feminino , Humanos , Fosforilação , Proteômica , Transdução de Sinais/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-22123850

RESUMO

mRNA translation is the most energy-consuming process in the cell and strongly correlates with cellular metabolic activity. Translation and energy metabolism play important roles in homeostatic cell growth and proliferation, and when dysregulated lead to cancer. eIF4E is a key regulator of translation, which promotes oncogenesis by selectively enhancing translation of a subset of tumor-promoting mRNAs (e.g., cyclins and c-myc). PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways, which are strongly implicated in cancer etiology, exert a number of their biological effects by modulating translation. The PI3K/AKT pathway regulates eIF4E function by inactivating the inhibitory 4E-BPs via mTORC1, whereas MAPKs activate MAP kinase signal-integrating kinases 1 and 2, which phosphorylate eIF4E. In addition, AMP-activated protein kinase, which is a central sensor of the cellular energy balance, impairs translation by inhibiting mTORC1. Thus, eIF4E plays a major role in mediating the effects of PI3K/AKT, MAPK, and cellular energetics on mRNA translation.


Assuntos
Metabolismo Energético/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Biossíntese de Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Humanos , Neoplasias/metabolismo
5.
J Gen Virol ; 91(Pt 5): 1224-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20053821

RESUMO

Eukaryotic initiation factor (eIF) 4E is a subunit of the cap-binding protein complex, eIF4F, which recognizes the cap structure of cellular mRNAs to facilitate translation initiation. eIF4E is assembled into the eIF4F complex via its interaction with eIF4G, an event that is under Akt/mTOR regulation. The eIF4E-eIF4G interaction is regulated by the eIF4E binding partners, eIF4E-binding proteins and eIF4E-transporter. Cleavage of eIF4G occurs upon poliovirus infection and is responsible for the shut-off of host-cell protein synthesis observed early in infection. Here, we document that relocalization of eIF4E to the nucleus occurs concomitantly with cleavage of eIF4G upon poliovirus infection. This event is not dependent upon virus replication, but is dependent on eIF4G cleavage. We postulate that eIF4E nuclear relocalization may contribute to the shut-off of host protein synthesis that is a hallmark of poliovirus infection by perturbing the circular status of actively translating mRNAs.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Poliovirus/fisiologia , Replicação Viral , Transporte Ativo do Núcleo Celular , Células HeLa , Humanos
6.
Am J Physiol Cell Physiol ; 296(5): C1207-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244480

RESUMO

Stress granules (SGs) arise as a consequence of cellular stress, contain stalled translation preinitiation complexes, and are associated with cell survival during environmental insults. SGs are dynamic entities with proteins relocating into and out of them during stress. Among the repertoire of proteins present in SGs is eukaryotic initiation factor 4E (eIF4E), a translation factor required for cap-dependent translation and that regulates a rate-limiting step for protein synthesis. Herein, we demonstrate that localization of eIF4E to SGs is dependent on the presence of a family of repressor proteins, eIF4E-binding proteins (4E-BPs). Our results demonstrate that 4E-BPs regulate the SG localization of eIF4E.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Resposta ao Choque Térmico/fisiologia , Fosfoproteínas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Transformada , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Sirolimo/farmacologia
7.
Curr Oncol ; 16(1): 59-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19229373

RESUMO

Cancer cells are characterized by aberrant growth arising from deregulated signalling pathways. The mammalian target of rapamycin (mTOR) pathway integrates multiple growth signals coming from both intracellular and extracellular cues. In this short review, we summarize what is known about the efficacy of targeting the mTOR pathway to treat cancer patients, and we explain the rationale behind promising new inhibitors that could show more potent tumour growth inhibition than did the first generation of these drugs.

8.
Oncogene ; 28(1): 128-39, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18836485

RESUMO

The Akt signaling pathway activity increases as normal tissue progresses to malignant transformation, and regulates the translation of specific messenger RNAs (mRNAs) through multiple mechanisms. We have identified one such mechanism of Akt-dependent translation control as involving the lupus autoantigen La. La is an RNA-associated protein that contains multiple trafficking elements to support the interaction with RNAs in different subcellular locations. We show here that the La protein is a direct target of the serine/threonine protein kinase Akt on threonine 301, and La nuclear export in mouse glial progenitors, as well as its association with polysomes is modulated by Akt activity. Using a functional approach to determine the network of genes affected by La in the cytoplasm by microarray analysis of polysome-bound mRNAs, we found that La binds 34% of the polysome bound mRNAs and regulates the expression of a specific pool of mRNAs under KRas/Akt activation. Therefore, La appears to be an important contributor to Akt-mediated translational regulation of these transcripts in murine glial cells.


Assuntos
Autoantígenos/metabolismo , Transformação Celular Neoplásica/metabolismo , Neuroglia/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Células-Tronco/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Ativação Enzimática , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Antígeno SS-B
9.
Br J Cancer ; 96 Suppl: R11-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17393579

RESUMO

Mounting evidence links deregulated protein synthesis to tumorigenesis via the translation initiation factor complex eIF4F. Components of this complex are often overexpressed in a large number of cancers and promote malignant transformation in experimental systems. mTOR affects the activity of the eIF4F complex by phosphorylating repressors of the eIF4F complex, the eIF4E binding proteins. The immunosuppressant rapamycin specifically inhibits mTOR activity and retards cancer growth. Importantly, mutations in upstream negative regulators of mTOR cause hamartomas, haemangiomas, and cancers that are sensitive to rapamycin treatment. Such mutations lead to increased eIF4F formation and consequently to enhanced translation initiation and cell growth. Thus, inhibition of translation initiation through targeting the mTOR-signalling pathway is emerging as a promising therapeutic option.

10.
Oncogene ; 25(48): 6416-22, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17041626

RESUMO

Control of mRNA translation plays a fundamental role in many aspects of cell metabolism. It constitutes a critical step in the control of gene expression, and consequently cell growth, proliferation and differentiation. Translation is regulated in response to nutrient availability, hormones, mitogenic and growth factor stimulation and is coupled with cell cycle progression and cell growth. Signaling by the PI3K/Akt/mTOR pathway profoundly affects mRNA translation through phosphorylation of downstream targets such as 4E-BP and S6K. Inhibitors of this pathway and thus cap-dependent translation are emerging as promising therapeutic options for the treatment of cancer.


Assuntos
Neoplasias/genética , Iniciação Traducional da Cadeia Peptídica , Proteínas Quinases/genética , Animais , Regulação da Expressão Gênica , Humanos , Mamíferos , Modelos Genéticos , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
11.
Br J Cancer ; 94(2): 195-9, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16404421

RESUMO

Mounting evidence links deregulated protein synthesis to tumorigenesis via the translation initiation factor complex eIF4F. Components of this complex are often overexpressed in a large number of cancers and promote malignant transformation in experimental systems. mTOR affects the activity of the eIF4F complex by phosphorylating repressors of the eIF4F complex, the eIF4E binding proteins. The immunosuppressant rapamycin specifically inhibits mTOR activity and retards cancer growth. Importantly, mutations in upstream negative regulators of mTOR cause hamartomas, haemangiomas, and cancers that are sensitive to rapamycin treatment. Such mutations lead to increased eIF4F formation and consequently to enhanced translation initiation and cell growth. Thus, inhibition of translation initiation through targeting the mTOR-signalling pathway is emerging as a promising therapeutic option.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Transformação Celular Neoplásica , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Proteínas Quinases/efeitos dos fármacos , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR
12.
Artigo em Inglês | MEDLINE | ID: mdl-17381337

RESUMO

Translation initiation requires the participation of eukaryotic translation initiation factors (eIFs). The poly(A)-binding protein (PABP) is thought to stimulate translation by promoting mRNA circularization through simultaneous interactions with eIF4G and the 3' poly(A) tail. PABP activity is regulated by the PABP-interacting proteins (Paips), a family of proteins consisting of Paip1, a translational stimulator, and Paip2A and Paip2B, two translational inhibitors. Paip2A controls PABP homeostasis via ubiquitination. When the cellular concentration of PABP is reduced, Paip2A becomes ubiquitinated and degraded, resulting in the relief of PABP repression. Paip1 interacts with eIF4A and eIF3, which promotes translation. The regulation of PABP activity by Paips represents the first known mechanism for controlling PABP, adding a new layer to the existing knowledge of PABP function.


Assuntos
Proteínas de Ligação a Poli(A)/metabolismo , Regiões 3' não Traduzidas , Animais , Modelos Biológicos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a Poli(A)/genética , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
Biochem Soc Trans ; 33(Pt 6): 1544-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246166

RESUMO

Translational control is a key genetic regulatory mechanism underlying the initial establishment of the major spatial axes of the Drosophila embryo. Many translational control mechanisms target eIF4E (eukaryotic initiation factor 4E), an initiation factor that recognizes the 5'-cap structure of the mRNA. Cap recognition by eIF4E, in complex with eIF4G, is essential for recruitment of the mRNA to the small ribosomal subunit. One established mechanism for repressing translation involves eIF4E-binding proteins, which competitively inhibit the eIF4E-eIF4G interaction. Our group has uncovered a novel mechanism for repression in which an eIF4E cognate protein called d4EHP, which cannot bind eIF4G, binds to the 5'-cap structure of cad mRNA thus rendering it translationally inactive. These two related, but distinct, mechanisms are discussed and contrasted in this review.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo
14.
Cell Mol Life Sci ; 62(11): 1267-74, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15905964

RESUMO

Ornithine decarboxylase (ODC) is the ratelimiting enzyme in the biosynthesis of polyamines, which are required for optimal cell growth and proliferation. ODC is overexpressed in many tumors and, conversely, its overexpression induces transformation. We have previously reported that ODC mRNA alternative splicing relieves the translation repression normally imposed by a long and structured 5' untranslated region (UTR), and that the ODC 5' UTR contains an internal ribosome entry site (IRES). Here we show that ODC IRES activity is enhanced following inclusion of alternative sequences generated by splicing at cryptic acceptor sites. Furthermore, the alternative ODC IRES is more sensitive to cell-cycledependent changes in the rate of translation. These findings uncover a new biological property of differentially spliced transcripts. This is the first example of alternative splicing that modulates mRNA translation through the cell cycle in a cap-independent manner.


Assuntos
Processamento Alternativo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética
15.
Curr Top Microbiol Immunol ; 279: 169-97, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14560958

RESUMO

Over the past few years, the target of rapamycin (TOR) pathway has been implicated in the control of translation, both in yeast and in higher eukaryotes. In this review, we provide an overview of translation in eukaryotes, and discuss the mechanisms and advantages of the regulation of translation. We then describe how the TOR pathway can modulate translation in yeast and in mammals, through the modulation of the phosphorylation of key translation components, and the regulation of the abundance of ribosomes and translation factors.


Assuntos
Biossíntese de Proteínas/fisiologia , Proteínas Quinases/fisiologia , Animais , Humanos , Camundongos , Fatores de Alongamento de Peptídeos/fisiologia , Proteínas Quinases/genética , Ribossomos , Transdução de Sinais/fisiologia , Sirolimo , Serina-Treonina Quinases TOR
16.
Genes Dev ; 15(21): 2852-64, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11691836

RESUMO

In most instances, translation is regulated at the initiation phase, when a ribosome is recruited to the 5' end of an mRNA. The eIF4E-binding proteins (4E-BPs) interdict translation initiation by binding to the translation factor eIF4E, and preventing recruitment of the translation machinery to mRNA. The 4E-BPs inhibit translation in a reversible manner. Hypophosphorylated 4E-BPs interact avidly with eIF4E, whereas 4E-BP hyperphosphorylation, elicited by stimulation of cells with hormones, cytokines, or growth factors, results in an abrogation of eIF4E-binding activity. We reported previously that phosphorylation of 4E-BP1 on Thr 37 and Thr 46 is relatively insensitive to serum deprivation and rapamycin treatment, and that phosphorylation of these residues is required for the subsequent phosphorylation of a set of unidentified serum-responsive sites. Here, using mass spectrometry, we identify the serum-responsive, rapamycin-sensitive sites as Ser 65 and Thr 70. Utilizing a novel combination of two-dimensional isoelectric focusing/SDS-PAGE and Western blotting with phosphospecific antibodies, we also establish the order of 4E-BP1 phosphorylation in vivo; phosphorylation of Thr 37/Thr 46 is followed by Thr 70 phosphorylation, and Ser 65 is phosphorylated last. Finally, we show that phosphorylation of Ser 65 and Thr 70 alone is insufficient to block binding to eIF4E, indicating that a combination of phosphorylation events is necessary to dissociate 4E-BP1 from eIF4E.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Humanos , Focalização Isoelétrica , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Mapeamento de Peptídeos , Fosforilação , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Serina/química , Sirolimo/farmacologia , Espectrometria de Fluorescência , Treonina/química , Transfecção
17.
Proc Natl Acad Sci U S A ; 98(24): 13796-801, 2001 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-11707573

RESUMO

The FKBP-12-rapamycin associated protein (FRAP, also known as mTOR and RAFT-1) is a member of the phosphoinositide kinase related kinase family. FRAP has serine/threonine kinase activity and mediates the cellular response to mitogens through signaling to p70s6 kinase (p70(s6k)) and 4E-BP1, resulting in an increase in translation of subsets of cellular mRNAs. Translational up-regulation is blocked by inactivation of FRAP signaling by rapamycin, resulting in G(1) cell cycle arrest. Rapamycin is used as an immunosuppressant for kidney transplants and is currently under investigation as an antiproliferative agent in tumors because of its ability to block FRAP activity. Although the role of FRAP has been extensively studied in vitro, characterization of mammalian FRAP function in vivo has been limited to the immune system and tumor models. Here we report the identification of a loss-of-function mutation in the mouse FRAP gene, which illustrates a requirement for FRAP activity in embryonic development. Our studies also determined that rapamycin treatment of the early embryo results in a phenotype indistinguishable from the FRAP mutant, demonstrating that rapamycin has teratogenic activity.


Assuntos
Padronização Corporal/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Divisão Celular , Linhagem Celular Transformada , Desenvolvimento Embrionário e Fetal , Fatores de Iniciação em Eucariotos , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro , Proteínas Quinases S6 Ribossômicas/genética , Serina-Treonina Quinases TOR
18.
J Nutr ; 131(11): 2988S-93S, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11694634

RESUMO

The target of rapamycin (TOR) proteins are large protein kinases evolutionarily conserved from yeast to human. A large body of evidence demonstrates that TOR proteins function in a nutrient-sensing checkpoint whose role is to restrict growth under conditions of low nutrient availability. Under such conditions, TOR blocks the transmission of growth-promoting signals from extracellular stimuli. Recent data obtained by genetic studies in the fruit fly Drosophila melanogaster demonstrate the importance of both insulin-like signaling and TOR signaling in promoting growth. Importantly, these studies identified a major downstream target of TOR and insulin-like signaling as the translational machinery.


Assuntos
Antibacterianos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Drosophila melanogaster , Humanos , Receptor de Insulina/efeitos dos fármacos
19.
Nat Med ; 7(10): 1128-32, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11590436

RESUMO

All nuclear-encoded mRNAs contain a 5' cap structure (m7GpppN, where N is any nucleotide), which is recognized by the eukaryotic translation initiation factor 4E (eIF4E) subunit of the eIF4F complex. The eIF4E-binding proteins constitute a family of three polypeptides that reversibly repress cap-dependent translation by binding to eIF4E, thus preventing the formation of the eIF4F complex. We investigated the biological function of 4E-BP1 by disrupting its gene (Eif4ebp1) in the mouse. Eif4ebp1-/- mice manifest markedly smaller white fat pads than wild-type animals, and knockout males display an increase in metabolic rate. The males' white adipose tissue contains cells that exhibit the distinctive multilocular appearance of brown adipocytes, and expresses the uncoupling protein 1 (UCP1), a specific marker of brown fat. Consistent with these observations, translation of the peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC1), a transcriptional co-activator implicated in mitochondrial biogenesis and adaptive thermogenesis, is increased in white adipose tissue of Eif4ebp1-/- mice. These findings demonstrate that 4E-BP1 is a novel regulator of adipogenesis and metabolism in mammals.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas de Membrana/genética , Fatores de Iniciação de Peptídeos/fisiologia , Fosfoproteínas/fisiologia , Biossíntese de Proteínas , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Tecido Adiposo/metabolismo , Animais , Metabolismo Basal , Proteínas de Ciclo Celular , Fator de Iniciação 4E em Eucariotos , Fatores de Iniciação em Eucariotos , Regulação da Expressão Gênica , Marcação de Genes , Hipoglicemia/metabolismo , Canais Iônicos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Mitocondriais , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fosfoproteínas/genética , Fosforilação , RNA Mensageiro , Proteínas Repressoras/genética , Proteína Desacopladora 1
20.
Mol Cell Biol ; 21(19): 6440-9, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11533233

RESUMO

Ceruloplasmin (Cp) is a glycoprotein secreted by the liver and monocytic cells and probably plays roles in inflammation and iron metabolism. We showed previously that gamma interferon (IFN-gamma) induced Cp synthesis by human U937 monocytic cells but that the synthesis was subsequently halted by a transcript-specific translational silencing mechanism involving the binding of a cytosolic factor(s) to the Cp mRNA 3' untranslated region (UTR). To investigate how protein interactions at the Cp 3'-UTR inhibit translation initiation at the distant 5' end, we considered the "closed-loop" model of mRNA translation. In this model, the transcript termini are brought together by interactions of poly(A)-binding protein (PABP) with both the poly(A) tail and initiation factor eIF4G. The effect of these elements on Cp translational control was tested using chimeric reporter transcripts in rabbit reticulocyte lysates. The requirement for poly(A) was shown since the cytosolic inhibitor from IFN-gamma-treated cells minimally inhibited the translation of a luciferase reporter upstream of the Cp 3'-UTR but almost completely blocked the translation of a transcript containing a poly(A) tail. Likewise, a requirement for poly(A) was shown for silencing of endogenous Cp mRNA. We considered the possibility that the cytosolic inhibitor blocked the interaction of PABP with the poly(A) tail or with eIF4G. We found that neither of these interactions were inhibited, as shown by immunoprecipitation of PABP followed by quantitation of the poly(A) tail by reverse transcription-PCR and of eIF4G by immunoblot analysis. We considered the alternate possibility that these interactions were required for translational silencing. When PABP was depleted from the reticulocyte lysate with anti-human PABP antibody, the cytosolic factor did not inhibit translation of the chimeric reporter, thus showing the requirement for PABP. Similarly, in lysates treated with anti-human eIF4G antibody, the cytosolic extract did not inhibit the translation of the chimeric reporter, thereby showing a requirement for eIF4G. These data show that translational silencing of Cp requires interactions of three essential elements of mRNA circularization, poly(A), PABP, and eIF4G. We suggest that Cp mRNA circularization brings the cytosolic Cp 3'-UTR-binding factor into the proximity of the translation initiation site, where it silences translation by an undetermined mechanism. These results suggest that in addition to its important function in increasing the efficiency of translation, transcript circularization may serve as an essential structural determinant for transcript-specific translational control.


Assuntos
Ceruloplasmina/genética , Inativação Gênica , Fatores de Iniciação de Peptídeos/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/química , Proteínas de Ligação a RNA/fisiologia , Regiões 3' não Traduzidas , Animais , Ceruloplasmina/biossíntese , Fator de Iniciação Eucariótico 4G , Humanos , Interferon gama/farmacologia , Modelos Genéticos , Proteínas de Ligação a Poli(A) , RNA/química , RNA/metabolismo , RNA Circular , RNA Mensageiro/metabolismo , Coelhos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA