Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 78(6): 591-604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529584

RESUMO

Maize (Zea mays) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.


Assuntos
Fertilizantes , Caules de Planta , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Espectral Raman , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Fertilizantes/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenóis/análise
2.
Anal Chem ; 93(44): 14635-14642, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699174

RESUMO

In this study, the novel application of ATR-FTIR spectroscopy and macro ATR-FTIR spectroscopic imaging overcame an analytical challenge in conservation science: the time-resolved, chemical, and spatial investigation of the reaction of inorganic treatments for stone conservation (ammonium oxalate, AmOx; ammonium phosphate, DAP) occurring in water-based solutions. The aim was to (1) assess the composition and localization of reaction products and their phase variation during the reaction in real time and directly in an aqueous environment and (2) investigate the reaction of AmOx and DAP with calcite and the transformations induced to the substrate with a time-resolved approach. The new analytical results showed that for both treatments, the formation of new crystalline phases initiated at the early stages of the reaction. Their composition changed during the treatment and led to more stable phases. The reactivity of the stone substrate to the treatments varied as a function of the stone material features, such as the specific surface area. A clear influence of post-treatment rinsing on the final composition of reaction phases was observed. Above all, our research demonstrates the actual feasibility, practicality, and high potential of an advanced ATR-FTIR spectroscopic approach to investigate the behavior of conservation treatments and provided new analytical tools to address the choices of conservation in pilot worksites. Lastly, this study opens novel analytical perspectives based on the new possible applications of ATR-FTIR spectroscopic imaging in the field of conservation science, materials science, and analytical chemistry.


Assuntos
Carbonato de Cálcio , Diagnóstico por Imagem , Testes Diagnósticos de Rotina , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Cancers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418894

RESUMO

The current understanding of mechanisms underlying the formation of metastatic tumors has required multi-parametric methods. The tissue micro-environment in secondary organs is not easily evaluated due to complex interpretation with existing tools. Here, we demonstrate the detection of structural modifications in proteins using emerging Fourier Transform Infrared (FTIR) imaging combined with light polarization. We investigated lungs affected by breast cancer metastasis in the orthotopic murine model from the pre-metastatic phase, through early micro-metastasis, up to an advanced phase, in which solid tumors are developed in lung parenchyma. The two IR-light polarization techniques revealed, for the first time, the orientational ordering of proteins upon the progression of pulmonary metastasis of breast cancer. Their distribution was complemented by detailed histological examination. Polarized contrast imaging recognised tissue structures of lungs and showed deformations in protein scaffolds induced by inflammatory infiltration, fibrosis, and tumor growth. This effect was recognised by not only changes in absorbance of the spectral bands but also by the band shifts and the appearance of new signals. Therefore, we proposed this approach as a useful tool for evaluation of progressive and irreversible molecular changes that occur sequentially in the metastatic process.

4.
Mater Sci Eng C Mater Biol Appl ; 119: 111634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321672

RESUMO

Modern bone tissue engineering is based on the use of implants in the form of biomaterials, which are used as scaffolds for osteoprogenitor or stem cells. The task of the scaffolds is to temporarily sustain the function, proliferation and differentiation of bone tissue to enable its regeneration. The aim of this work is to use the macro ATR-FTIR spectroscopic imaging for analysis of the ceramic-based biomaterial (chitosan/ß-1,3-glucan/hydroxyapatite). Specifically, during long-term culture of mesenchymal cells derived from adipose tissue (ADSCs) and bone marrow (BMDSCs) on the surface of scaffold. Infrared spectroscopy allows the acquisition of information on both the organic and inorganic parts of the tested composite. This innovative spectroscopic approach proved to be very suitable for studying the formation of new bone tissue and ECM components, sample staining and demineralization are not required and consequently the approach is rapid and cost-effective. The novelty of this study focuses on the innovatory use of ATR-FTIR imaging to evaluate the molecular structure and maturity of collagen as well as mineral matrix formation and crystallization in the context of bone regenerative medicine. Our research has shown that the biomaterial investigated on this work facilitates the formation of valid bone ECM of the stem cells types studied, as a result of the synthesis of type I collagen and mineral content deposition. Nevertheless, ADSC cells have been proven to produce a greater amount of collagen with a lower content of helical secondary structures, at the same time showing a higher mineralization intensity compared to BMDSC cells. Considering the above results, it could be stated that the developed scaffold is a promising material for biomedical applications, including modification of bone implants to increase their biocompatibility.


Assuntos
Durapatita , Células-Tronco Mesenquimais , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Colágeno , Humanos , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais
5.
Anal Bioanal Chem ; 413(2): 455-467, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169173

RESUMO

Metal soaps are formed in paint layers thorough the reaction of metal ions of pigments and fatty acids of organic binders. In this study, micro-ATR-FTIR spectroscopic imaging was used to analyse the formation of lead soaps in oil-based paint layers in relation to their exposure to moisture sources. The investigations were carried out on authentic samples of complex stratigraphies from cold painted terracotta statues (Sacred Mount, Varallo, UNESCO) and different IR-active lead white pigments, organic materials, and lead soaps were discriminated. The saponification of selected paint layers was correlated to the conservation history, the manufacturing technique, and the build-up of layers. The presence of hydrophilic layers within the stratigraphy and their role as a further water source are discussed. Furthermore, the modifications experienced by lead-based pigments from the core of an intact grain of pigment towards the newly formed decay phases were investigated via a novel approach based on shift of the peak for the corresponding spectral bands and their integrated absorbance in the ATR-FTIR spectra. Qualitative information on the spatial distribution from the chemical images was combined with quantitative information on the peak shift to evaluate the different manufacture (lead carbonate, basic lead carbonate) or the extent of decay undergone by the lead-based pigments as a function of their grain size, contiguous layers, and moisture source. Similar results, having a high impact on heritage science and analytical chemistry, allow developing up-to-date conservation strategies by connecting an advanced knowledge of the materials to the social and conservation history of artefacts.

6.
Anal Chem ; 92(14): 9691-9698, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32551580

RESUMO

The effects of hydration on the DNA conformation in the colon biopsy tissues at different disease stages, hyperplasia, dysplasia, and cancer, and their subsequent classifications were investigated in this study. FTIR spectroscopic imaging was used to study the tissues while controlling the humidity from 16% RH to 88% RH using saturated salt solutions. A nonuniform uptake of water into the tissue at its maximum hydrated state was observed in the chemical images showing the distribution of the absorbance of the νas OH spectral band. The regions of high absorbance of this band in the tissues overlap with the regions of high absorbance of predominantly the phosphate (1143-1100 cm-1) and lipid (2879-2844 cm-1) bands. Analysis of the second derivative spectra of the hydrated and dehydrated colon tissues further revealed significant peak shifts and changes in absorbance of the spectral bands that correspond to the vibrations of the phosphate group of DNA. These findings showed some disparities when compared to the effect of hydration on the infrared spectra of live cells and pure isolated DNA, possibly due to the presence of DNA mostly in its A-form in the formalin fixed tissues. Coupled with principal component analysis, the spectral biomarkers that differentiate the healthy colon tissues from the diseased tissues were identified to be in the phosphodiester spectral region (1300-1000 cm-1). This differentiation varied under different humidity conditions, with the highest sensitivity of ∼98% found at the dehydrated state of the tissues with random forest supervised classification.


Assuntos
Neoplasias do Colo/diagnóstico , Umidade , Manejo de Espécimes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água , DNA/química , Humanos , Conformação de Ácido Nucleico
7.
Appl Spectrosc ; 74(5): 544-552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32031010

RESUMO

Fourier transform infrared (FT-IR) spectroscopic imaging and microscopy of single living cells are established label-free technique for the study of cell biology. The constant driver to improve the spatial resolution of the technique is due to the diffraction limit given by infrared (IR) wavelength making subcellular study challenging. Recently, we have reported, with the use of a prototype zinc sulfide (ZnS) transmission cell made of two hemispheres, that the spatial resolution is improved by the factor of the refractive index of ZnS, achieving a λ/2.7 spatial resolution using the synchrotron-IR microscopy with a 36× objective with numerical aperture of 0.5. To refine and to demonstrate that the ZnS hemisphere transmission device can be translated to standard bench-top FT-IR imaging systems, we have, in this work, modified the device to achieve a more precise path length, which has improved the spectral quality of the living cells, and showed for the first time that the device can be applied to study live cells with three different bench-top FT-IR imaging systems. We applied focal plane array (FPA) imaging, linear array, and a synchrotron radiation single-point scanning method and demonstrated that in all cases, subcellular details of individual living cells can be obtained. Results have shown that imaging with the FPA detector can measure the largest area in a given time, while measurements from the scanning methods produced a smoother image. Synchrotron radiation single-point mapping produced the best quality image and has the flexibility to introduce over sampling to produce images of cells with great details, but it is time consuming in scanning mode. In summary, this work has demonstrated that the ZnS hemispheres can be applied in all three spectroscopic approaches to improve the spatial resolution without any modification to the existing microscopes.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Células A549 , Humanos , Lentes , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Sulfetos/química , Síncrotrons/instrumentação , Compostos de Zinco/química
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117695, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31753650

RESUMO

A new large-area germanium ATR crystal is utilised with an FTIR microscope to improve the acquired images of de-paraffinized colon biopsy sections, without recourse to a synchrotron source. The large crystal (⌀ = 28 mm) offers significant improvements compared to slide-on small germanium crystal (⌀ = 3.5 mm); for example, it facilitates more uniform distribution of higher signal intensity within the field of view and more rapid acquisition time. Mapping of a larger sample area up to ca. 350 × 350 µm2 with this new set-up, coupled with imaging using an FPA detector, is demonstrated for the first time on biological specimens. The performance of k-means clustering algorithm applied to classify the different anatomical structures of the colon biopsies is greatly improved with mapping. Comparison of H&E stained adjacent tissue sections with false-colour k-means images strongly support differentiation of five distinct regions within tissues. The efficiency of the methodology to categorise colon tissues at various stages of malignancy is analysed via multivariate chemometrics. The second derivative spectra extracted from the crypt region of the colon were subjected to Partial Least Squares classification. Good separation between data in clusters occurs when projecting spectra on a PLS score plot on a plane made by the first 3 principal components. Important spectral biomarkers for colon malignancy classification were identified to exist mostly in the fingerprint region of the FTIR spectrum based on the chemometrics analysis.


Assuntos
Colo/diagnóstico por imagem , Colo/patologia , Germânio/química , Biomarcadores Tumorais/metabolismo , Biópsia , Análise por Conglomerados , Neoplasias do Colo/diagnóstico por imagem , Cristalização , Humanos , Análise dos Mínimos Quadrados , Análise de Componente Principal , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
9.
Anal Bioanal Chem ; 411(26): 6969-6981, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418050

RESUMO

Fourier transform infrared (FTIR) spectroscopic imaging of colon biopsy tissues in transmission combined with machine learning for the classification of different stages of colon malignancy was carried out in this study. Two different approaches, an optical and a computational one, were applied for the elimination of the scattering background during the measurements and compared with the results of the machine learning model without correction for the scattering. Several different data processing pathways were implemented in order to obtain a high accuracy of the prediction model. This study demonstrates, for the first time, that C-H stretching and amide I bands are of little to no significance in the classification of the colon malignancy, based on the Gini importance values by random forest (RF). The best prediction outcome is found when supervised RF classification was carried out in the fingerprint region of the spectral data between 1500 and 1000 cm-1 (excluding the contribution of amide I and II bands). An overall prediction accuracy higher than 90% is achieved through the RF. The results also show that dysplastic and hyperplastic tissues are well distinguished. This leads to the insight that the important differences between hyperplastic and dysplastic colon tissues lie within the fingerprint region of FTIR spectra. In this study, computational correction performed better than optical correction, but the findings show that the disease states of colon biopsies can be distinguished effectively without elimination of Mie scattering effect. Graphical abstract.


Assuntos
Colo/diagnóstico por imagem , Neoplasias do Colo/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Colo/química , Neoplasias do Colo/química , Aprendizado de Máquina , Prognóstico
10.
Analyst ; 144(9): 2954-2964, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30758356

RESUMO

The depth of penetration and effective thickness in ATR-FTIR spectroscopic imaging are dependent on the wavelength and angle of incidence of the incoming light beam. We have demonstrated, for the first time, that variable angle micro ATR-FTIR, which is created via the insertion of circular apertures, is intrinsic at examining embedded components within a prostate tissue specimen. This is done by constructing a 3D model from the stacks of 2D chemical images obtained, each of which represents the spatial distribution of a chosen spectral band assigned to the component of interest at a different probing depth. ATR-FTIR imaging is also shown to have the ability to resolve subcellular components of cells such as organelles. For differentiation of diseased and non-diseased tissues, statistical tests are employed to analyse the spectral datasets obtained. When the second derivative of the spectral datasets was subjected to t-test analysis, the spectral differences between both samples in the fingerprint region are shown to be more significant at a shallow depth of penetration, with the greatest variance at the spectral band of 1235 cm-1 (vasPO2-), depicted by plotting the scores of PCA on its first two PCs. Overall, this paper demonstrates a non-destructive, label-free approach for examining heterogeneous biological samples in the z-direction to construct a 3D model using micro ATR-FTIR imaging, in a qualitative and semi-quantitative manner.


Assuntos
Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA