Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(19): 3951-3954, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686739

RESUMO

This manuscript describes our third generation, gram-scale synthesis of very long chain-polyunsaturated fatty acids (VLC-PUFAs), a unique and increasingly important class of lipids. Critical to this work and what makes it different from our previous approach to this family was the avoidance of oxidation sequences. Central to accomplishing this involved the use of a Negishi coupling reaction between the acid chloride derived from DHA and a saturated alkyl zinc reaction. Overall, the general approach required 6 synthetic transformations from DHA and was accomplished with an overall yield of 40%.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/síntese química , Estrutura Molecular , Zinco/química , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/síntese química
2.
Sci Rep ; 14(1): 4103, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374209

RESUMO

Spatial clustering is an essential method for the comprehensive understanding of a region. Spatial clustering divides all spatial units into different clusters. The attributes of each cluster of the spatial units are similar, and simultaneously, they are as continuous as spatially possible. In spatial clustering, the handling of spatial outliers is important. It is necessary to improve spatial integration so that each cluster is connected as much as possible, while protecting spatial outliers can help avoid the excessive masking of attribute differences This paper proposes a new spatial clustering method for raster data robust to spatial outliers. The method employs a sliding window to scan the entire region to determine spatial outliers. Additionally, a mechanism based on the range and standard deviation of the spatial units in each window is designed to judge whether the spatial integration should be further improved or the spatial outliers should be protected. To demonstrate the usefulness of the proposed method, we applied it in two case study areas, namely, Changping District and Pinggu District in Beijing. The results show that the proposed method can retain the spatial outliers while ensuring that the clusters are roughly contiguous. This method can be used as a simple but powerful and easy-to-interpret alternative to existing geographical spatial clustering methods.

3.
Sci Total Environ ; 912: 169102, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056649

RESUMO

Farming in protected areas frequently challenges ecological conservation goals while supporting local livelihoods. To balance protection and agriculture, a comprehensive understanding of cropland dynamics in protected areas is of paramount importance. However, studies addressing this trade-off are relatively scarce, especially considering explicit Chinese government regulations on population relocation and cropland retirement in National Protected Areas (NPAs). Our study examined the spatial and temporal pattern of cropland in NPAs and explored the covariance between cropland density and species richness. Concurrently, the driving factors of cropland development in NPAs were analyzed using Multiple Linear Regression. The results indicate that the cropland area in NPAs continued to expand, growing from 1.93 to 2.34 million hectares in 2000-2020, with a cropland density of approximately 0.4. Cropland expansion in the northern NPAs, particularly in the resource-rich Northeast (28.12 %) and the Northwest with high marginal agricultural returns (38.26 %), have encroached upon species habitats and aggravated biodiversity loss. Moreover, cities with higher cropland densities in NPAs are usually located at borders, possibly due to decentralized management. The Multiple Linear Regression results show that high cropland density is usually associated with a high population density (ß = 0.156) and lower levels of rural education (ß = -0.101) and income (ß = -0.122). To mitigate the issue of cropland development in NPAs, it is crucial to avoid one-size-fits-all management strategies, strengthen regional legal supervision, adjust fiscal incentives, and promote eco-friendly agriculture. In the north regions, the expansion of cropland in NPAs should be strictly controlled. For the southwest, the positive role of preserving cropland in NPAs for alleviating human-nature conflict and maintaining social stability should be emphasized. This study provides research support for China's exploration of geographically suitable strategies for controlling cropland in NPAs. Moreover, the findings could serve as a reference for the governance of NPAs in other countries.

4.
Front Public Health ; 11: 1310180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035282

RESUMO

The health issues of China's older adult population in rural areas have been receiving increasing attention with the continuous expansion of the nation's ageing population and the continuous promotion of urban-rural integration. The impact of the new rural social pension insurance (NRSPI) on the health of the rural older adult population, the mechanism of its action and how old-age service can be improved and optimised according to the health needs of the rural older adult population are urgent and realistic challenges. Based on survey data from the China Health and Retirement Longitudinal Study in 2015 and 2018, this study applies a multivariate ordered logistic regression model to explore the impact mechanism and effect of the NRSPI on the older adult population health in rural China while controlling for endogeneity. The results show that participation in the NRSPI can significantly improve the health of the rural older adult population at a 1% level. The results of the heterogeneity test reveal that the NRSPI has a significant impact on the self-reported health of the rural older adult at a 1% level, with a significantly positive impact on the mental and physical health of rural female older adult, whereas the impact on male older adult is not significant. The mediating effect test results show that medical services, food access and entertainment activities have a mediating effect on the new rural social endowment insurance. The results of the moderating effect test indicate that the NRSPI regulates 7.8% of the effect of physical health on mental health and 10.7% of the effect of mental health on physical health. Based on these findings, this study proposes to strengthen the construction of healthy lifestyle guidance and emotional support systems while improving the NRSPI's participation rate and treatment level to meet the diverse health service needs of different older adult groups.


Assuntos
Seguro , Aposentadoria , Humanos , Masculino , Feminino , Idoso , Estudos Longitudinais , População Urbana , Pensões , China/epidemiologia
5.
PNAS Nexus ; 2(6): pgad172, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383022

RESUMO

The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere-chemistry-snow model, to reveal the high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown-induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic activities.

6.
iScience ; 26(4): 106364, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009210

RESUMO

The UN Climate Change Conference in Glasgow spawned the enhancement and updating of many nations' climate pledges. Previous research has investigated the effects of these pledges on limiting planetary warming, but their spatially explicit effects on land use/cover are unknown. Here, we linked the Glasgow pledges and the spatially explicit responses of the Tibetan Plateau's land systems. We found that while fulfilling global climate pledges may not significantly affect the global shares of forestland, grassland/pasture, shrubland, and cropland, it needs a 9.4% increase in the forest area of the Tibetan Plateau. This need is an area 11.4 times the increase of the plateau's forest in the 2010s, or greater than the size of Belgium. The new forest comes mainly from the medium-density grassland in the Yangtze River basin, calling for more proactive environmental management for the headwaters area of this longest river in Asia.

7.
Sci Rep ; 13(1): 5559, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019915

RESUMO

Land resources are fundamentally important to human society, and their transition from one macroscopic state to another is a vital driving force of environment and climate change locally and globally. Thus, many efforts have been devoted to the simulations of land changes. Among all spatially explicit simulation models, CLUMondo is the only one that simulates land changes by incorporating the multifunctionality of a land system and allows the establishment of many-to-many demand-supply relationships. In this study, we first investigated the source code of CLUMondo, providing a complete, detailed mechanism of this model. We found that the featured function of CLUMondo-balancing demands and supplies in a many-to-many mode-relies on a parameter called conversion order. The setting of this parameter is a manual process and requires expert knowledge, which is not feasible for users without an understanding of the whole, detailed mechanism. Therefore, the second contribution of this study is the development of an automatic method for adaptively determining conversion orders. Comparative experiments demonstrated the validity and effectiveness of the proposed automated method. We revised the source code of CLUMondo to incorporate the proposed automated method, resulting in CLUMondo-BNU v1.0. This study facilitates the application of CLUMondo and helps to exploit its full potential.

9.
Dalton Trans ; 51(37): 14097-14106, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040797

RESUMO

Although lithium-sulfur batteries (LSBs) are very promising in energy storage devices, their low conductivity, shuttle effect, and volume expansion unfavorably lead to sluggish kinetics and worsening electrochemical performance. To address these problems, we firstly prepared conductive carbon nanowires embedded with lithiophilic CoSe2 nanoparticles (CoSe2-CNWs), and utilized CoSe2-CNWs to construct reduced graphene oxide (rGO) sheets; thereby, sandwich-type CoSe2-CNWs@rGO composites were assembled. CoSe2-CNWs@rGO composites were taken as the sulfur host. Due to the alternating rGO sheets and active sulfur, the special sandwich structure can maximize the use of sulfur, confine polysulfides physically, favor electron transport, and cushion the volume change during cycling. The interlayer CoSe2-CNWs network also can entrap polysulfides chemically, promote the electron transfer, and improve the reaction kinetics, owing to the synergetic merits of high polarity and conductivity. Compared with CoSe2-CNWs/S and Co-CNWs/S, the CoSe2-CNWs@rGO/S cathode shows a significant improvement in cell performance. Its specific capacity decreases from 1137.9 mA h g-1 at 0.1 C to 649.7 mA h g-1 at 2 C, demonstrating the optimal rate performance. The cycling capacity also slowly reduces from 975.4 mA h g-1 to 839.7 mA h g-1 after 150 cycles at 0.5 C, showing a high retention of 86.1% with a tiny average fading rate (0.093%).

10.
Natl Sci Rev ; 9(1): nwab091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070327

RESUMO

Cropland redistribution to marginal land has been reported worldwide; however, the resulting impacts on environmental sustainability have not been investigated sufficiently. Here we investigated the environmental impacts of cropland redistribution in China. As a result of urbanization-induced loss of high-quality croplands in south China (∼8.5 t ha-1), croplands expanded to marginal lands in northeast (∼4.5 t ha-1) and northwest China (∼2.9 t ha-1) during 1990-2015 to pursue food security. However, the reclamation in these low-yield and ecologically vulnerable zones considerably undermined local environmental sustainability, for example increasing wind erosion (+3.47%), irrigation water consumption (+34.42%), fertilizer use (+20.02%) and decreasing natural habitats (-3.11%). Forecasts show that further reclamation in marginal lands per current policies would exacerbate environmental costs by 2050. The future cropland security risk will be remarkably intensified because of the conflict between food production and environmental sustainability. Our research suggests that globally emerging reclamation of marginal lands should be restricted and crop yield boost should be encouraged for both food security and environmental benefits.

11.
Sci Total Environ ; 806(Pt 2): 150322, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607098

RESUMO

Accurate information on farmland soil heavy metal elements is needed for pollution management and strategic decision making at the national level. In this paper, we review the Chinese literature on soil heavy metal elements (i.e., arsenic, cadmium, chromium, copper, lead, mercury, and zinc) over the past 20 years using meta-analysis. The overall pollution status, spatiotemporal distribution patterns and driving factors of heavy metals in China's farmland soil are explored by using the geoaccumulation index, the standard deviation ellipse method and the PCA/APCS model, respectively. The results show that most heavy metals in farmland soil from the study cases are similar to the world average. Seven types of elements have increased compared with background values. Cd and Hg have become the top polluting elements in China and industrial and agricultural activities are the main sources of current heavy metal element enrichment. Regional natural-social-economic differences have led to significant spatial heterogeneity of heavy metal pollution, showing an intensity pattern unfavourable to national food security. In the time period, the overall distribution range gradually increased with the accelerated growth of regional industrial output, and there was a tendency for the gravity centre of the pollution studies to migrate inland to the northwest and southwest. Regionally differentiated environmental regulation and pollution remediation measures should be developed for pollution prevention and control in the future.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Fazendas , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
12.
J Org Chem ; 86(21): 15164-15176, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34586823

RESUMO

In this work, we demonstrate that readily available conjugated bis-aryl cyclobutenones undergo photoelectrocyclization reactions to give the corresponding dihydrophenanthrene cyclobutanones when exposed to 350 nm light, TFA, and TMSCl. We have also found that cyclobutenone electrocyclizations and cycloreversions are in equilibrium.


Assuntos
Ciclobutanos , Compostos de Bifenilo
13.
Nanotechnology ; 32(50)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34555827

RESUMO

The low sulfur utilization, cycling instability, and sluggish kinetics are the critical obstructions to practical applications of lithium-sulfur batteries (LSBs). Constructing sulfur hosts with high conductivity, suppressed shuttle effect, and rapid kinetics is essential for their practical application in LSBs. Here, we synthetically utilized the merits of ZnSe quantum dots (QDs) and layered Ni(OH)2to boost the performance of LSBs. A novel core-shell ZnSe-CNTs/S@Ni(OH)2was constructed using the ZnSe-CNTs network as framework to load sulfur and following with Ni(OH)2encapsulation. The CNT network decorated with ZnSe QDs not only serves as a conductive framework providing fast electron/ion transfer channels, but also limits polysulfide diffusion physically and chemically. Layered Ni(OH)2, the wrinkled encapsulation, not only permits fast electron/ion transfer, but also buffers the expansion, confines active materials, and limits the polysulfide dissolution chemically. When used as a cathode, ZnSe-CNTs/S@Ni(OH)2presents enhanced electrochemistry performance compared with ZnSe-CNTs/S and CNTs/S. The average specific capacity decreases from 1021.9 mAh g-1at 0.2 C to 665.0 mAh g-1at 2 C, showing rate capacity much higher than ZnSe-CNTs/S and CNTs/S. After 150 cycles, the capacity at 0.5 C slowly reduces from 926.7 to 789.0 mAh g-1, showing high retention of 85.1%. Therefore, our investigation provides a new strategy to construct a promising sulfur cathode for LSBs.

14.
J Colloid Interface Sci ; 599: 416-426, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33962202

RESUMO

Lithium-sulfur batteries (LSBs) are regarded as promising candidates for next-generation electrochemical energy storage systems due to their low cost and high energy density. However, the insulative sulfur, the volume expansion and high soluble polysulfides are three roots impeding their practical applications, and consequently bring challenges of low sulfur utilization, poor cyclic stability and sluggish redox kinetics. Herein, a special core-shell ZnS-CNTs/S@Ni(OH)2 (labeled as ZnS-CNTs/S@NH) cathode has been designed to overcome above obstacles and elevate the electrochemical performance. The ZnS-CNTs/S@NH cathode is synthesized via a facile step-by-step strategy, in which ZnS-decorated CNTs was used as a framework to load sulfur and followed with a ultrathin Ni(OH)2 (NH) layer encapsulation. The ZnS-CNT core combines merits of CNT network and polar ZnS quantum dots (QDs), accommodating the volume change, offering efficient pathways for fast electron/ion transport, and anchoring polysulfides through polar interactions. The outer Ni(OH)2 shell physically confines the active material and meanwhile provides plenty of catalytic sites for effective polysulfide chemisorption. Benefiting from these merits, the ZnS-CNTs/S@NH cathode exhibits excellent cell performances in comparison with ZnS-CNTs/S and CNTs/S. Its discharge capacity at different C-rates is optimal in the three cathodes, which decreases from 1037.0 mAh g-1 at 0.1 C to 646.1 mAh g-1 at 2.0 C. Its cyclic capacity also manifests the slowest reduction from 861.1 to 760.1 mAh g-1 after 150 cycles at 0.5 C, showing a high retention (88.3%) and a tiny average fading rate (0.078%). The strategy in this work provides a feasible approach to design and construct core-shell cathode materials for realizing practically usable Li-S batteries.

15.
Geohealth ; 4(12): e2020GH000332, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344872

RESUMO

Coronavirus disease 2019 (COVID-19) has spread around the world and requires effective control measures. Like the human-to-human transmission of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the distribution of COVID-19 was driven by population flow and required emergency response measures to slow down its spread and degrade the epidemic risk. The local epidemic risk of COVID-19 is a combination of emergency response measures and population flow. Because of the spatial heterogeneity, the different impacts of coupled emergency responses and population flow on the COVID-19 epidemic during the outbreak period and a control period are unclear. We examined and compared the impact of emergency response measures and population flow on China's epidemic risk after the Wuhan lockdown during the outbreak period and a control period. We found that the population flow out of Wuhan had a long-term impact on the epidemic's spread. In the outbreak period, a large population flow out of Wuhan led to nationwide migration mobility, which directly increased the epidemic in each province. Meanwhile, quick emergency responses mitigated the spread. Although low population flow to provinces far from Hubei delayed the outbreak in those provinces, relatively delayed emergency response increased the epidemic in the control period. Consequently, due to the strong transmission ability of the SARS-CoV-2 virus, no region correctly estimated the epidemic, and the relaxed emergency response raised the epidemic risks in the context of the outbreak.

16.
Entropy (Basel) ; 22(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33286180

RESUMO

Sustainable development appears to be the theme of our time. To assess the progress of sustainable development, a simple but comprehensive index is of great use. To this end, a multivariate index of sustainable development was developed in this study based on indicators of the United Nations Sustainable Development Goals (SDGs). To demonstrate the usability of this developed index, we applied it to Fujian Province, China. According to the China SDGs indicators and the Fujian situation, we divided the SDGs into three dimensions and selected indicators based on these dimensions. We calculated the weights and two indices with the entropy weight coefficient method based on collecting and processing of data from 2007 to 2017. We assessed and analyzed the sustainable development of Fujian with two indices and we drew three main conclusions. From 2007 to 2017, the development index of Fujian showed an increasing trend and the coordination index of Fujian showed a fluctuating trend. It is difficult to smoothly improve the coordination index of Fujian because the development speeds of Goal 3 (Good Health and Well-being) and Goal 16 (Peace, Justice, and Strong Institutions) were low. The coordination index of Fujian changed from strong coordination to medium coordination from 2011 to 2012 because the development speed of the environmental dimension suddenly improved. It changed from strong coordination to medium coordination from 2015 to 2016 because the values of the development index of the social dimension were decreasing. To the best of our knowledge, these are the first SDGs-based multivariate indices of sustainable development for a region of China. These indices are applicable to different regions.

17.
Nanotechnology ; 31(49): 495406, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990275

RESUMO

Constructing sulfur hosts with high electronic conductivity, large void space, strong chemisorption, and rapid redox kinetics is critically important for their practical applications in lithium-sulfur batteries (LSBs). Herein, by coupling ZnS quantum dots (QDs) with carbon nanotubes (CNTs), one multifunctional sulfur host CNT/ZnS-QDs is designed via a facile one-step hydrothermal method. SEM and TEM analyses reveal that small ZnS-QDs (<5 nm) are uniformly anchored on the CNT surface as well as encapsulated into CNT channels. This special architecture ensures sulfur direct contacting with highly conductive CNTs; meanwhile, the catalytic effect of anchored ZnS-QDs improves the chemisorption and confinement to polysulfides. Benefiting from these merits, when used as sulfur hosts, this special architecture manifests a high specific capacity, superior rate capability, and long-term cycling stability. The ZnS-QDs dependent electrochemical performance is also evaluated by adjusting the mass ratio of ZnS-QDs, and the host of CNT/ZnS-QDs 27% owns the optimal cell performance. The specific capacity decreases from 1051 mAh g-1 at 0.2 C to 544 mAh g-1 at 2.0 C, showing rate capability much higher than CNT/S and other CNT/ZnS-QDs/S samples. After 150 cycles, the cyclic capacity at 0.5 C exhibits a slow reduction from 1051 mAh g-1 to 771 mAh g-1, showing a high retention of 73.4% with a coulombic efficiency of over 99%. The electrochemical impedance spectroscopy analyses demonstrate that this special architecture juggles high conductivity and excellent confinement of polysulfides, which can significantly suppress the notorious shuttle effect and accelerate the redox kinetics. The strategy in this study provides a feasible approach to design efficient sulfur hosts for realizing practically usable LSBs.

18.
Nanomaterials (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731451

RESUMO

Er3+-sensitized upconversion nanoparticles (UCNPs) have attracted great attention due to their tunable upconversion (UC) emissions, low cytotoxicity, high resistance to photobleaching and especially multiple effective excitation wavelengths. However, detailed energy conversion between Er3+ and Tm3+ ions in Y2O3 UCNPs is still a problem, especially under multi-wavelength and variable pulse width excitation. In this work, we successfully fabricated a series of Er3+-sensitized Y2O3 nanocrystals by a spray flame synthesis method with a production rate of 40.5 g h-1. The as-prepared UCNPs are a pure cubic phase with a mean size of 14 nm. Excited by both 980 and 808 nm lasers, the tunable upconversion luminescence (UCL) from Er3+ ions was achieved by increasing the Er3+ doping concentration, co-doping Tm3+ ions and extending excitation pulse-width. The investigations of the lifetimes and the laser power dependence of UC emissions further support the proposed mechanism, which provides guidance for achieving effective color control in anticounterfeiting and multiplexed labeling applications. In addition, the red UC emission at about 5 mm beneath the tissue surface was observed in an ex vivo imaging experiment under the excitation of 808 nm laser, indicating that the Y2O3:Er3+/Tm3+ UCNPs have great prospects in further biological applications.

19.
J Org Chem ; 85(8): 5449-5463, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32175747

RESUMO

Outlined here are studies exploring the scope of the sequential photoelectrocyclization, [1,5]-hydride shift of conjugated bis-aryl cycloalkenone substrates. We have found not only that the cyclization precursors can be synthesized in a modular fashion but also that the cyclization is efficient and amenable to the presence of a range of cycloalkenones and aromatic systems. Among the interesting discoveries from this work is that the electrocyclization intermediate can be competitively captured with protons and that the nature of the excited state (singlet vs triplet) is dependent on aromatic substitution.


Assuntos
Prótons , Ciclização
20.
Org Lett ; 21(21): 8611-8614, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621339

RESUMO

Described here are tandem photoelectrocyclization and [1,5]-hydride shift reactions of heteroaryl-containing bis-aryl cyclohexenone derivatives that give heteroaryl-substituted dihydrophenanthrenes. This Letter demonstrates that electrocyclization intermediates can be trapped with acid when the [1,5]-hydride shift is relatively slow. From a practical perspective, the observation that the acid-mediated reaction gives a divergent stereochemical outcome when compared with the reaction run under neutral conditions makes these transformations powerful.


Assuntos
Cetonas/química , Processos Fotoquímicos , Ciclização , Eletroquímica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA