Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 7(9): 1602-1603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106189

RESUMO

We sequenced the complete mitochondrial genome of sand dollar Astriclypeus mannii (Verrill 1867) (Echinoidea: Astriclypeidae) occurring in the subtidal sand flat in Jeju Island off the south coast of Korea. The mitochondrial genome was 15,744 bp in length and contained 13 protein-coding genes (PCGs), 22 transfer RNAs, two ribosomal RNAs, and 140 nucleotides representing the putative control region. We reconstructed the concatenated phylogenetic tree based on 13 PCGs of 18 echinoderms, including A. mannii. From the maximum likelihood clustering, A. mannii was grouped in the order Echinolampadacea. The complete mitochondrial sequence of A. mannii for the first time in this study provide valuable insight in understanding the evolution and phylogenetic analysis of echinoids (sea urchins).

2.
Sci Rep ; 11(1): 24339, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934104

RESUMO

Marine ecosystems in urban coastal areas are exposed to many risks due to human activity. Thus, long-term and continuous monitoring of zooplankton diversity is necessary. High-throughput DNA metabarcoding has gained recognition as an efficient and highly sensitive approach to accurately describing the species diversity of marine zooplankton assemblages. In this study, we collected 30 zooplankton samples at about 2-week intervals for 1 year. Zooplankton diversity showing a typical four season pattern. Of the "total" and "common" zooplankton, we assigned 267 and 64 taxa. The cluster structure and seasonal diversity pattern were rough when only the "common" zooplankton was used. Our study examined how to maximize the benefits of metabarcoding for monitoring zooplankton diversity in urban coastal areas. The results suggest that to take full advantage of metabarcoding when monitoring a zooplankton community, it is necessary to carefully investigate potential ecosystem threats (non-indigenous species) through sufficient curation rather than disregarding low-abundance operational taxonomic units.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33332255

RESUMO

A Gram-stain-negative, orange-pigmented and strictly aerobic bacterium, designated strain MJ115T, was isolated from seawater in Pohang, South Korea. Cells were non-motile rods and showed positive reactions for catalase and oxidase tests. Growth of strain MJ115T was observed at 4-35 °C (optimum, 30 °C), pH 6.0-7.0 (optimum, pH 6.5) and in the presence of 0-8.0 % (w/v) NaCl (optimum, 2.0%). Strain MJ115T contained iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 1 ω9c, C17 : 0 2-OH, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as major cellular fatty acids and menaquinone-6 as the major respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids were detected as major polar lipids. The G+C content of the genomic DNA was 40.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ115T formed a phyletic lineage with Nonlabens marinus S1-08T, Nonlabens agnitus JC2678T and Nonlabens antarcticus AKS 622T within the genus Nonlabens. Strain MJ115T was also most closely related to N. marinus S1-08T, N. agnitus JC2678T and N. antarcticus AKS 622T with 96.5, 96.4 and 96.0 % 16S rRNA sequence similarities, respectively. Here it is proposed that strain MJ115T represents a new species of the genus Nonlabens, for which the name Nonlabens ponticola sp. nov. is proposed. The type strain is MJ115T (=KCTC 72237T=NBRC 113963T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that Nonlabens tegetincola and Nonlabens sediminis belong to the same species. Therefore, it is proposed that N. sediminis is reclassified as a later heterotypic synonym of N. tegetincola.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Sci Rep ; 10(1): 5603, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221370

RESUMO

3'-Sialyllactose (3'-SL), a natural prebiotic, maintains immune homeostasis and exerts anti-inflammatory and anti-arthritic effects. Although regulatory T cells (Tregs) prevent excessive inflammation and maintain immune tolerance, the effect of 3'-SL on Treg regulation is unclear. This study aimed to investigate the effect of 3'-SL on Treg responses in atopic dermatitis (AD) pathogenesis. Oral administration of 3'-SL reduced AD-like symptoms such as ear, epidermal, and dermal thickness in repeated topical application of house dust mites (HDM) and 2,4-dinitrochlorobenzene (DNCB). 3'-SL inhibited IgE, IL-1ß, IL-6, and TNF-α secretion and markedly downregulated AD-related cytokines including IL-4, IL-5, IL-6, IL-13, IL-17, IFN-γ, TNF-α, and Tslp through regulation of NF-κB in ear tissue. Additionally, in vitro assessment of Treg differentiation revealed that 3'-SL directly induced TGF-ß-mediated Treg differentiation. Furthermore, 3'-SL administration also ameliorated sensitization and elicitation of AD pathogenesis by suppressing mast cell infiltration and production of IgE and pro-inflammatory cytokines in mouse serum by mediating the Treg response. Furthermore, Bifidobacterium population was also increased by 3'-SL administration as prebiotics. Our data collectively show that 3'-SL has therapeutic effects against AD progression by inducing Treg differentiation, downregulating AD-related cytokines, and increasing the Bifidobacterium population.


Assuntos
Dermatite Atópica/prevenção & controle , Oligossacarídeos/uso terapêutico , Prebióticos , Pele/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Genes Genomics ; 42(1): 41-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677127

RESUMO

BACKGROUND: KIF18A is a kinesin family member that is involved in various cellular processes including cell division, cell transformation, and carcinogenesis. However, its possible role in the regulation of host immunity has not been examined. OBJECTIVE: The aim of this study is to investigate the functional role of KIF18A in the differentiation and activation of dendritic cells (DCs) that are the most efficient antigen-presenting cells. METHODS: A bioinformatic analysis of the KIF18A gene family was performed to understand its sequence variability and evolutionary history. To inhibit KIF18A activity, a highly specific small molecule inhibitor for KIF18A, BTB-1 was used. DCs were differentiated from mouse bone marrow (BM) cells from 6 to 7 week old C57BL/6 mice with recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression of KIF18A was measured by Western blotting. The surface expression of differentiation and activation markers on DCs were analyzed by flow cytometry. RESULTS: The phylogenetic analysis revealed that the KIF18A gene family is remarkably conserved across vertebrates. Interestingly, the expression of KIF18A was increased as BM precursor cells differentiated into DCs. BTB-1 treatment strongly inhibited the differentiation of BM cells into DCs in a dose-dependent manner. Furthermore, treatment of immature DCs with BTB-1 significantly impaired the expression of activation markers on DCs including MHC class I, CD80, and CD86 upon TLR4 or TLR7 treatment. CONCLUSION: Our results reveal that KIF18A is a critical DC differentiation and activation regulator. Therefore, KIF18A could be a potential therapeutic target for immune-mediated disorders.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Células Dendríticas/citologia , Cinesinas/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA