Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1366186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550534

RESUMO

Introduction: Fentanyl and fentanyl analogs (F/FA) have become increasingly common adulterants in counterfeit prescription pills and illicit street drug mixtures due to their ease of synthesis and exceedingly high potency. The ongoing epidemic of fatal overdoses fueled by F/FA continues to highlight the need for longer-acting therapies than naloxone (NLX), the current gold-standard for reversing opioid overdoses, which shows limited efficacy to prevent renarcotization associated with F/FA toxicity. A novel opioid reversal agent based on covalent naloxone nanoparticles (cNLX-NP) has been shown to blunt fentanyl-induced respiratory depression out to 48 hr, demonstrating its potential therapeutic utility. The purpose of this study was to characterize how rapidly cNLX-NP reverses fentanyl-induced respiratory effects as well as the duration of its protective effects. Methods: Sprague Dawley male rats (n=6/group) were tested on an oximeter for baseline percent arterial oxygen saturation (%SaO2) challenged with 0.1 mg/kg SC fentanyl and 15 min later given 10 mg/kg IM doses of NLX, nalmefene (NLMF), or cNLX-NP and continuously monitored via oximetry for 10 minutes. One week later the experiment was repeated using a 1:1 mixture of NLX:cNLX-NP as the reversal agent in the rats that previously received NLX alone. Results: While both NLX and NLMF rapidly reversed %SaO2 to baseline within 1 min, rats that received cNLX-NP did not return to >90% SaO2 levels until 9 min after administration. Similarly, heart and breath rates returned to baseline within 1 min of treatment with NLX and NLMF but did not return to baseline until 10 minutes after cNLX-NP administration. In contrast, NLX:cNLX-NP reversed all fentanyl-induced respiratory depressive effects within one minute. Discussion: While cNLX-NP alone may not sufficiently reverse F/FA overdose in a timely manner, mixing free NLX with cNLX-NP can provide a mechanism to both rapidly reverse fentanyl-related effects and maintain extended protection against synthetic opioid toxicity. These data support further development of cNLX-NP as a fast-acting and long-lasting antidote to treat F/FA-induced respiratory depression and overdose, and potentially prevent renarcotization in humans.

2.
ACS Pharmacol Transl Sci ; 7(2): 363-374, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357285

RESUMO

Illicit drug mixtures containing opioids and stimulants have been responsible for the majority of fatal drug overdoses among occasional users, and those with either opioid use disorder (OUD) or substance use disorder (SUD). As a complementary strategy to current pharmacotherapies, active immunization with conjugate vaccines has been proposed as a viable intervention to treat OUD as well as other SUD for which there are either limited or no treatment options. Vaccination against opioids and stimulants could help address the limitations of current medications (e.g., patient access, compliance, misuse liability, and safety) by providing an additional tool to prevent drug misuse and/or overdoses. However, more research is needed to fully understand the potential benefits and limitations of using vaccines to treat SUD and overdose and to inform us on how to deploy this strategy in the field. Previous reports have shown promise by combining two vaccines into bivalent vaccine formulations to concurrently target multiple drugs. Here, multiple individual candidate monovalent vaccines were incrementally combined in multivalent vaccine formulations to simultaneously target fentanyl, carfentanil, oxycodone, heroin, methamphetamine, and their analogs or metabolites. Bi-, tri-, and quadrivalent vaccine formulations induced the formation of independent serum antibody responses against their respective opioid targets and selectively attenuated the distribution of each individual drug to the brain in mice and rats. Results indicate that a single injection of an admixed multivalent vaccine formulation may be more effective than coinjecting multiple monovalent vaccines at multiple sites. Finally, adding a methamphetamine conjugate vaccine to an quadrivalent opioid vaccine in a pentavalent formulation did not interfere with the production of effective antiopioid IgG antibodies. Multivalent vaccines could provide multifaceted, yet selective, protection against polydrug use and exposure.

3.
Sci Adv ; 9(39): eadh4094, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774021

RESUMO

Autophagy induction involves extensive molecular and membrane reorganization. Despite substantial progress, the mechanism underlying autophagy initiation remains poorly understood. Here, we used quantitative photoactivated localization microscopy with single-molecule sensitivity to analyze the nanoscopic distribution of endogenous ULK1, the kinase that triggers autophagy. Under amino acid starvation, ULK1 formed large clusters containing up to 161 molecules at the endoplasmic reticulum. Cross-correlation analysis revealed that ULK1 clusters engaging in autophagosome formation require 30 or more molecules. The ULK1 structures with more than the threshold number contained varying levels of Atg13, Atg14, Atg16, LC3B, GEC1, and WIPI2. We found that ULK1 activity is dispensable for the initial clustering of ULK1, but necessary for the subsequent expansion of the clusters, which involves interaction with Atg14, Atg16, and LC3B and relies on Vps34 activity. This quantitative analysis at the single-molecule level has provided unprecedented insights into the behavior of ULK1 during autophagy initiation.


Assuntos
Autofagia , Aminoácidos/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Humanos
4.
ACS Pharmacol Transl Sci ; 5(5): 331-343, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592436

RESUMO

Drug-related fatal overdoses have significantly increased in the past decade due to the widespread availability of illicit fentanyl and other potent synthetic opioids such as carfentanil. Deliberate or accidental consumption or exposure to carfentanil, fentanyl, and their mixture induces respiratory depression and bradycardia that can be difficult to reverse with the opioid receptor antagonist naloxone. Vaccines offer a promising strategy to reduce the incidence of fatalities associated with fentanyl-related substances, as well as treatment for opioid use disorder (OUD). This study reports monovalent and bivalent vaccination strategies that elicit polyclonal antibody responses effective in protecting against the pharmacological actions of carfentanil, fentanyl, or carfentanil/fentanyl mixtures. Rats were prophylactically immunized with individual conjugate vaccines containing either carfentanil- or fentanyl-based haptens, or their combination in bivalent vaccine formulations, and then challenged with carfentanil, fentanyl, or their mixture. First, these studies identified a lead vaccine protective against carfentanil-induced antinociception, respiratory depression, and bradycardia. Then, efficacy against both carfentanil and fentanyl was achieved through bivalent vaccination strategies that combined lead anti-carfentanil and anti-fentanyl vaccines via either heterologous prime/boost or co-administration immunization regimens. These preclinical data support the development of vaccines as a viable strategy to prevent toxicity from exposure to excessive doses of carfentanil, fentanyl, or their mixtures.

5.
Autophagy ; 16(4): 600-614, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31208283

RESUMO

ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this study, we have determined roles of Atg8-family proteins (ATG8s) in regulating ULK1 activity and autophagy. Using human cells depleted of each subfamily of ATG8, we found that the GABARAP subfamily positively regulates ULK1 activity and phagophore and autophagosome formation in response to starvation. In contrast, the LC3 subfamily negatively regulates ULK1 activity and phagophore formation. By reconstituting ATG8-depleted cells with individual ATG8 members, we identified GABARAP and GABARAPL1 as positive and LC3B and LC3C as negative regulators of ULK1 activity. To address the role of ATG8 binding to ULK1, we mutated the LIR of endogenous ULK1 to disrupt the ATG8-ULK1 interaction by genome editing. The mutation drastically reduced the activity of ULK1, autophagic degradation of SQSTM1, and phagophore formation in response to starvation. The mutation also suppressed the formation and turnover of autophagosomes in response to starvation. Similar to the mutation of the ULK1 LIR, disruption of the ATG13-ATG8 interaction suppressed ULK1 activity and autophagosome formation. In contrast, RB1CC1 did not show any specific binding to ATG8s, and mutation of its LIR did not affect ULK1 activity. Together, this study demonstrates differential binding and opposite regulation of the ULK1 complex by GABARAPs and LC3s, and an important role of the ULK1- and ATG13-ATG8 interactions in autophagy induction.Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG8: autophagy related 8; ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; ATG101: autophagy related 101; BAFA1: bafilomycin A1; BECN1: beclin 1; Cas9: CRISPR associated protein 9; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: earle's balanced salt solution; DAPI: 4'-6-diamidino-2-phenylindole; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; gRNA: guide RNA; KI: kinase inactive mutant; KO: knockout; LC3A: microtubule associated protein 1 light chain 3 alpha; LC3B: microtubule associated protein 1 light chain 3 beta; LC3C: microtubule associated protein 1 light chain 3 gamma; LIR: LC3-interacting region; MTORC1: mechanistic target of rapamycin kinase complex 1; PBS: phosphate buffered saline; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; qPCR: quantitative PCR; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RPS6KB1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TALEN: transcription activator-like effector nuclease; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase 1; WB: western blotting; WIPI2: WD repeat domain phosphoinositide interacting 2; WT: wild type.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA