Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410475

RESUMO

Deficient gamma oscillations in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ) are proposed to arise from alterations in the excitatory drive to fast-spiking interneurons (E→I) and in the inhibitory drive from these interneurons to excitatory neurons (I→E). Consistent with this idea, prior postmortem studies showed lower levels of molecular and structural markers for the strength of E→I and I→E synapses and also greater variability in E→I synaptic strength in PFC of SZ. Moreover, simulating these alterations in a network of quadratic integrate-and-fire (QIF) neurons revealed a synergistic effect of their interactions on reducing gamma power. In this study, we aimed to investigate the dynamical nature of this synergistic interaction at macroscopic level by deriving a mean-field description of the QIF model network that consists of all-to-all connected excitatory neurons and fast-spiking interneurons. Through a series of numerical simulations and bifurcation analyses, findings from our mean-field model showed that the macroscopic dynamics of gamma oscillations are synergistically disrupted by the interactions among lower strength of E→I and I→E synapses and greater variability in E→I synaptic strength. Furthermore, the two-dimensional bifurcation analyses showed that this synergistic interaction is primarily driven by the shift in Hopf bifurcation due to lower E→I synaptic strength. Together, these simulations predict the nature of dynamical mechanisms by which multiple synaptic alterations interact to robustly reduce PFC gamma power in SZ, and highlight the utility of mean-field model to study macroscopic neural dynamics and their alterations in the illness.

2.
J Phys Chem B ; 112(20): 6398-410, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18444674

RESUMO

The liquid structures of nonaqueous electrolytes composed of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and acetamide, with LiTFSI/acetamide molar ratios of 1:2, 1:4, and 1:6, were studied by molecular dynamics simulations. The simulations indicate that the Li+ cations prefer to be six-coordinate by the sulfonyl oxygen atoms of the TFSI- anions and the carbonyl oxygen atoms of the acetamide molecules, rather than by the most electronegative nitrogen atom of the TFSI- anion. Therefore, close Li+-TFSI- contact pairs exist in the system. The TFSI- anion prefers to provide only one of four possible oxygen atoms to coordinate to the same Li+ cation. Three conformations (cis, trans, and gauche) of the TFSI- anions were found to coexist in the liquid electrolyte. At high salt concentrations, the TFSI- anions mainly adopt the gauche conformation in order to provide more oxygen atoms to coordinate to different Li+ cations, while simultaneously reducing the repulsion among the Li+ cations. On the other hand, the fraction of TFSI- anions adopting the cis conformation is largest for the system with the molar ratio of 1:6, in which many clusters, mainly composed of the Li+ cations and the TFSI- anions, are immersed in the acetamide molecules. The size and charge distribution of clusters were also investigated. In the system with the molar ratio of 1:2, nearly all of the ions in the PBC (periodic boundary conditions) box aggregate into a bulky cluster that gradually disassembles into small clusters with decreasing salt concentration. The addition of acetamide molecules was found to effectively relax the liquid electrolyte structure, and the system with the molar ratio of 1:4 was found to exhibit a more homogeneous liquid structure than the other two electrolyte systems with molar ratios of 1:2 and 1:6.

3.
J Am Chem Soc ; 126(27): 8380-1, 2004 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-15237986

RESUMO

Hydrogen titanate nanofibers synthesized by a hydrothermal reaction, are chemically reactive, readily reacting with dilute acid. This reaction is a topochemical process in which in situ phase transition from H-titanate to anatase takes place and the product retains the fibril morphology. The extent of this reaction can be precisely controlled, allowing us to achieve a delicate composite structure at nanoscale: long titanate fibers of 40-100 nm thick and up to 30 mum long covered with anatase nanocrystals of 10-30 nm. The structure has desired photocatalytic properties and can be separated readily after use. This study demonstrates new opportunities to create delicate inorganic nanostructures with advanced functions by wet chemical reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA