Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 16(7): 1037-1044, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196366

RESUMO

BACKGROUND: The Wells-Riley equation has been extensively used to quantify the infection risk of airborne transmission indoors. This equation is difficult to apply to actual conditions because it requires measurement of the outdoor air supply rate, which vary with time and are difficult to quantify. The method of determining the fraction of inhaled air that has been exhaled previously by someone in a building using a CO2 concentration measurement can solve the limitations of the existing method. Using this method, the indoor CO2 concentration threshold can be determined to keep the risk of infection below certain conditions. METHODS: Based on the calculation of the rebreathed fraction, an appropriate mean indoor CO2 concentration and required air exchange rate to control SARS-CoV-2 airborne transmission was calculated. The number of indoor occupants, ventilation rate, and the deposition and inactivation rates of the virus-laden aerosols were considered. The application of the proposed indoor CO2 concentration-based infection rate control was investigated through case studies in school classrooms and restaurants. RESULTS: In a typical school classroom environment with 20-25 occupants and an exposure time of 6-8 h, the average indoor CO2 concentration should be kept below 700 ppm to control the risk of airborne infection indoors. The ASHRAE recommended ventilation rate is sufficient when wearing a mask in classrooms. For a typical restaurant with 50-100 occupants and an exposure time of 2-3 h, the average indoor CO2 concentration should be kept below about 900 ppm. Residence time in the restaurant had a significant effect on the acceptable CO2 concentration. CONCLUSION: Given the conditions of the occupancy environment, it is possible to determine an indoor CO2 concentration threshold, and keeping the CO2 concentration lower than a certain threshold could help reduce the risk of COVID-19 infection.


Assuntos
COVID-19 , Infecções , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Dióxido de Carbono , Aerossóis e Gotículas Respiratórios
2.
Aerosol Sci Technol ; 57(5): 467-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38799734

RESUMO

Considering the hazardous effects of particulate matter (PM) exposure on students and teachers and the high PM concentration issue in South Korea, air purifiers have recently been installed in most classrooms to improve air quality. However, some on-site challenges, such as operational costs and noise, have been issues with the continuous operation of air purifiers. Therefore, a guideline is needed to dynamically predict the indoor PM concentration based on the changes in outdoor PM concentration and activate the air purifiers only when necessary. This study develops a grey-box model that uses measured data and physical differential equations to perform the given objective and verifies its accuracy using ASTM D5157. Modeling and analysis results have obtained information that can form the basis for developing guidelines to address PM issues in schools: The air purifier should be operated during periods where the predicted values exceed the limit in closed windows and the air purifier is not operating. It was also confirmed that the need for the operation of the air purifier varies between schools and classrooms under the same outdoor PM concentration. Indoor PM concentration increased significantly after students' simultaneous mass movement, necessitating air purifiers' operation before and after the events. The prefilter of the heater also aided in the removal of coarse PM. Additionally, the limitations and future development directions of the model were discussed.

3.
Build Environ ; 207(Pt A)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38617094

RESUMO

The Korean government recommends intermittent operation of air purifiers (APs) as a measure to maintain indoor particulate matter (PM) concentrations below the mandatory standards and reduce exposure to indr PM2.5 (PM with a diameter smaller than 2.5 µm). However, there is no guideline to inform occupants of when and how long APs should be operated to comply with the standards. In this study, we developed a dynamic mass-balance model to predict indoor PM concentrations in an office considering penetration of outdoor particles, change in number of occupants, and operational status of the AP. The model fit and prediction accuracies were verified using the American Society for Testing and Materials (ASTM) D 5157 criteria and the k-fold validation technique. We observed that indoor PM2.5 concentrations were determined by infiltration of outdoor PM2.5, and indoor generation/resuspension by occupants and removal. For PM2.5-10(2.5 µm

4.
Sci Total Environ ; 789: 147764, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051507

RESUMO

The World Health Organization (WHO) announced that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread through aerosols, so-called airborne transmission, especially in a poorly ventilated indoor environment. Ventilation protects the occupants against airborne transmission. Various studies have been performed on the importance of sufficient ventilation for diluting the concentration of virus and lowering any subsequent dose inhaled by the occupants. However, the ventilation situation can be problematic in public buildings and other shared spaces, such as shops, offices, schools, and restaurants. If ventilation is provided by opening windows, the outdoor airflow rate depends strongly on the specific local conditions (opening sizes, relative positions, climatic and weather conditions). This study uses field measurements to analyze the natural ventilation performance in a school building according to the window opening rates, positions, and weather conditions. The ventilation rates were calculated by the tracer gas decay method, and the infection risk was assessed using the Wells-Riley equation. Under cross-ventilation conditions, the average ventilation rates were measured at 6.51 h-1 for 15% window opening, and 11.20 h-1 for 30% window opening. For single-sided ventilation, the ventilation rates were reduced to about 30% of the values from the cross-ventilation cases. The infection probability is less than 1% in all cases when a mask is worn and more than 15% of the windows are open with cross-ventilation. With single-sided ventilation, if the exposure time is less than 1 h, the infection probability can be kept less than 1% with a mask. However, the infection probability exceeds 1% in all cases where exposure time is greater than 2 h, regardless of whether or not a mask is worn. Also, when the air conditioner was operated with a window opening ratio of 15%, power consumption increased by 10.2%.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , SARS-CoV-2 , Instituições Acadêmicas , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA