Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 16843, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26574924

RESUMO

The quantum anomalous Hall effect (QAHE) is predicted to be realized at high temperature in a honeycomb bilayer consisting of Au atoms and single-vacancy graphene (Au2-SVG) based on the first-principles calculations. We demonstrate that the ferromagnetic state in the Au2-SVG can be maintained up to 380 K. The combination of spatial inversion symmetry and the strong SOC introduced by the Au atoms causes a topologically nontrivial band gap as large as 36 meV and a QAHE state with Chern number C = -2. The analysis of the binding energy proved that the honeycomb bilayer is stable and feasible to be fabricated in experiment. The QAHEs in Ta2-SVG and other TM2-SVGs are also discussed.

3.
Sci Rep ; 4: 7575, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524662

RESUMO

Magnetic graphene-based materials have shown great potential for developing high-performance electronic devices at sub-nanometer such as spintronic data storage units. However, a significant reduction of power consumption and great improvement of structural stability are needed before they can be used for actual applications. Based on the first-principles calculations, here we demonstrate that the interaction between tungsten atoms and nitrogenized-divacancies (NDVs) in the hybrid W@NDV-graphene can lead to high stability and large magnetic anisotropy energy (MAE). More importantly, reversible switching between different magnetic states can be implemented by tuning the MAE under different electric fields, and very low energy is consumed during the switching. Such controllable switching of magnetic states is ascribed to the competition between the tensile stain and orbital magnetic anisotropy, which originates from the change in the occupation number of W-5d orbitals under the electric fields. Our results provide a promising avenue for developing high-density magnetic storage units or multi-state logical switching devices with ultralow power at sub-nanometer.

4.
Nanotechnology ; 24(22): 225702, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23637078

RESUMO

Local electrical conduction behaviors of polycrystalline La-doped BiFeO3 thin films have been investigated by combining conductive atomic force microscopy and piezoelectric force microscopy. Nanoscale current measurements were performed as a function of bias voltage for different crystal grains. Completely distinct conducting processes and resistive switching effects were observed in the grain boundary and grain interior. We have revealed that local electric conduction in a grain is dominated by both the grain boundary and ferroelectric domain, and is closely related to the applied electric field and the as-grown state of the grain. At lower voltages the electrical conduction is dominated by the grain boundary and is associated with the redistribution of oxygen vacancies in the grain boundary under external electric fields. At higher voltages both the grain boundary and ferroelectric domain are responsible for the electrical conduction of grains, and the electrical conduction gradually extends from the grain boundary into the grain interior due to the extension of the ferroelectric domain towards the grain interior. We have also demonstrated that the conduction dominated by the grain boundary exhibits a much small switching voltage, while the conduction of the ferroelectric domain causes a much high switching voltage in the grain interior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA