Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 44(4): 491-507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38008899

RESUMO

Neutrophils plays a crucial role in acute ischemic brain injury and have emerged as potential treatment targets to mitigate such injuries. Lysine-specific demethylase 4 A (KDM4A), a member of the histone lysine demethylase family of enzymes involved in transcriptional regulation of gene expression, is upregulated during hypoxic events. However, the exact role of KDM4A in the pathological process of ischemic stroke remains largely unexplored. Our findings reveal that there was an upregulation of KDM4A levels in reactive astrocytes within both stroke mouse models and in vitro oxygen-glucose deprivation/regeneration (OGD/R) models. Using a conditional knockout mouse, we observed that astrocytic Kdm4a knockout regulates neutrophil infiltration and alleviates brain injury following middle cerebral artery occlusion reperfusion. Furthermore, Kdm4a deficiency astrocytes displayed lower chemokine C-X-C motif ligand 1 (CXCL1) level upon OGD/R and decreased neutrophil infiltration in a transwell system. Mechanistically, KDM4A, in cooperation with nuclear factor-kappa B (NF-κB), activates Cxcl1 gene expression by demethylating histone H3 lysine 9 trimethylation at Cxcl1 gene promoters in astrocytes upon OGD/R injury. Our findings suggest that astrocyte KDM4A-mediated Cxcl1 activation contributes to neutrophil infiltration via cooperation with NF-κB, and KDM4A in astrocytes may serve as a potential therapeutic target to modulate neutrophil infiltration after stroke.


Assuntos
Isquemia Encefálica , Histona Desmetilases , Traumatismo por Reperfusão , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Quimiocinas/metabolismo , Infarto da Artéria Cerebral Média/patologia , Lisina , Camundongos Knockout , Infiltração de Neutrófilos , NF-kappa B/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Histona Desmetilases/metabolismo
2.
PLoS One ; 14(10): e0224562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661512

RESUMO

BACKGROUND: The benefits of volatile anesthetics in coronary artery bypass grafting (CABG) patients remain controversial. We aimed to conduct an updated meta-analysis to assess whether the use of volatile anesthetics during CABG could reduce mortality and other outcomes. METHODS: We searched eight databases from inception to June 2019 and included randomized controlled trials (RCTs) comparing the effects of volatile anesthetics versus total intravenous anesthesia (TIVA) in CABG patients. The primary outcomes were operative mortality and one-year mortality. The secondary outcomes included the length of stay in the intensive care unit (ICU) and hospital and postoperative safety outcomes (myocardial infarction, heart failure, arrhythmia, stroke, delirium, postoperative cognitive impairment, acute kidney injury, and the use of intra-aortic balloon pump (IABP) or other mechanical circulatory support). Trial sequential analysis (TSA) was performed to control for random errors. RESULTS: A total of 89 RCTs comprising 14,387 patients were included. There were no significant differences between the volatile anesthetics and TIVA groups in operative mortality (relative risk (RR) = 0.92, 95% confidence interval (CI): 0.68-1.24, p = 0.59, I2 = 0%), one-year mortality (RR = 0.64, 95% CI: 0.32-1.26, p = 0.19, I2 = 51%), or any of the postoperative safety outcomes. The lengths of stay in the ICU and hospital were shorter in the volatile anesthetics group than in the TIVA group. TSA revealed that the results for operative mortality, one-year mortality, length of stay in the ICU, heart failure, stroke, and the use of IABP were inconclusive. CONCLUSIONS: Conventional meta-analysis suggests that the use of volatile anesthetics during CABG is not associated with reduced risk of mortality or other postoperative safety outcomes when compared with TIVA. TSA shows that the current evidence is insufficient and inconclusive. Thus, future large RCTs are required to clarify this issue.


Assuntos
Anestesia Geral/métodos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Intravenosos/efeitos adversos , Anestésicos Inalatórios/uso terapêutico , Anestésicos Intravenosos/uso terapêutico , Ponte de Artéria Coronária/métodos , Humanos , Unidades de Terapia Intensiva , Balão Intra-Aórtico , Tempo de Internação , Infarto do Miocárdio , Complicações Pós-Operatórias/mortalidade , Período Pós-Operatório , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Pharm Res ; 36(12): 171, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31654287

RESUMO

PURPOSE: Physiologically-based pharmacokinetic (PBPK) modeling offers a unique modality to predict age-specific pharmacokinetics. The objective of this study was to assess the ability of PBPK model to predict plasma exposure of oxycodone, a widely used opioid for pain management, in adults and children. METHODS: A full PBPK model of oxycodone following intravenous and oral administration was developed using a 'bottom-up' and 'top-down' combined strategy. The model was then extrapolated to pediatrics through a reasonable scaling method. The adult and pediatric model was evaluated using data from 17 clinical PK studies by testing predicted/observed goodness of fit. The mean fold error for PK parameters was calculated. Finally, we used the validated PBPK model to visualize adult-children dose conversion for oxycodone. RESULTS: The developed PBPK model successfully predicted the oxycodone disposition in adults, wherein the predicted versus observed AUC, Cmax, and tmax were within 0.90 to 1.20-fold difference. After scaling anatomy/physiology, protein binding, and clearance, the model showed satisfactory prediction performance for pediatric populations as predicted AUC were within the 1.50-fold range of the observed values. According to the application of PBPK model, we found that different intravenous doses should be given in children of different ages compared to a standard 0.1 mg/kg in adults, while a progressive increasing dose with age growth following oral administration is recommended for children. CONCLUSIONS: The current example provides the opportunity for using the PBPK model to guide dose adjustment of oxycodone in the design of future pediatric clinical studies.


Assuntos
Analgésicos Opioides/farmacocinética , Oxicodona/farmacocinética , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Analgésicos Opioides/administração & dosagem , Criança , Pré-Escolar , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos , Lactente , Recém-Nascido , Taxa de Depuração Metabólica , Modelos Biológicos , Oxicodona/administração & dosagem , Pediatria
4.
Naunyn Schmiedebergs Arch Pharmacol ; 385(8): 823-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569796

RESUMO

Choline, an agonist of M(3) muscarinic acetylcholine receptors, is a precursor and metabolite of acetylcholine and is also a functional modulator of cellular membrane. However, the effect of choline on cardiac hypertrophy is not fully understood. The present study was therefore designed to explore whether choline could prevent cardiac hypertrophy induced by angiotensin II (Ang II) and clarify its potential mechanisms. Cardiac hypertrophy was induced by 0.6 mg kg(-1) day(-1) Ang II for 2 weeks in the presence or absence of choline pretreatment, while cardiomyocyte hypertrophy was induced by Ang II 0.1 µM for 48 h. We found that choline pretreatment attenuated the increment cell size of cardiomyocytes induced by Ang II both in vivo and in vitro. The high ANP and ß-MHC levels induced by Ang II were also reversed by choline in cardiomyocytes. Meanwhile, choline pretreatment prevented the augment of reactive oxygen species (ROS) and intracellular calcium concentration in Ang II-treated cardiomyocytes. Furthermore, the upregulated phospho-p38 mitogen-activated protein kinase (MAPK) and calcineurin levels by Ang II in ventricular myocytes were attenuated by choline. In conclusion, choline prevents Ang II-induced cardiac hypertrophy through inhibition of ROS-mediated p38 MAPK activation as well as regulation of Ca(2+)-mediated calcineurin signal transduction pathway. Our results provide new insights into the pharmacological role of choline in cardiovascular diseases.


Assuntos
Angiotensina II/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Colina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Calcineurina/metabolismo , Células Cultivadas , Eletrocardiografia , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Receptor Muscarínico M3/efeitos dos fármacos
5.
Clin Exp Pharmacol Physiol ; 39(4): 343-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22224440

RESUMO

Increasing evidence indicates the important roles of M(3) muscarinic acetylcholine receptors (M(3) mAChR) in the regulation and maintenance of cardiac function and heart disease. In the present study, we investigated whether the M(3) mAChR mediates the cardioprotection against ischaemia-induced arrhythmias and the mechanisms involved. Myocardial ischaemia was established in Wistar rats by occlusion of the left anterior descending coronary artery. Rats were treated with choline chloride (an M(3) mAChR agonist; 10 mg/kg, i.v.) 10 min before occlusion. In addition, 4-diphenylacetoxy-N-methylpiperidine-methiodide (4-DAMP; 0.12 µg/kg, i.v.) was administered 5 min before choline in the 4-DAMP-treated group. Ischaemia-induced arrhythmias were evaluated in each group for a period of 1 h after occlusion. After 24 h occlusion, protein and mRNA levels of L-type Ca(2+) channels and the Na(+) /Ca(2+) exchanger (NCX) were determined. Ischaemia-induced arrhythmias following coronary artery occlusion were diminished by choline and this effect was reversed in the 4-DAMP-treated group. In vitro, the effects of myocardial ischaemia were simulated by incubating isolated ventricular cardiomyocytes with Tyrode's solution (pH 6.8). Intracellular Ca(2+) overload was confirmed and this was decreased by choline. Furthermore, choline reduced the L-type Ca(2+) current (I(C) (a,) (L) ) compared with cardiomyocytes incubated in Tyrode's solution (pH 6.8) alone. Choline reduced the 'ischaemia'-induced upregulated expression of L-type Ca(2+) channels and NCX at both the protein and mRNA level. Based on these results, choline has an obvious protective effect against ischaemia-induced arrhythmias that is mediated via activation of cardiac M(3) mAChR, which reduces Ca(2+) overload mediated by L-type Ca(2+) channels and the NCX.


Assuntos
Arritmias Cardíacas/prevenção & controle , Cardiotônicos/uso terapêutico , Colina/uso terapêutico , Isquemia Miocárdica/prevenção & controle , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/metabolismo , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Colina/farmacologia , Masculino , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA