Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Adv Healthc Mater ; 13(7): e2302615, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38117037

RESUMO

Hypoxia is a key hallmark of solid tumors and can cause resistance to various treatments such as photodynamics and immunotherapy. Microenvironment-responsive gene editing provides a powerful tool to overcome hypoxia resistance and remodel hypoxic microenvironments for enhanced tumor therapy. Here, a light-enhanced hypoxia-responsive multifunctional nanocarrier is developed to perform spatiotemporal specific dual gene editing for enhanced photodynamic and immunotherapy in breast cancer. As a gated molecule of nanocarrier, the degradation of azobenzene moieties under hypoxic conditions triggers controllable release of Cas9 ribonucleoprotein in hypoxic site of the tumor. Hyaluronic acid is conjugated with chloramine e6 to coat mesoporous silica nanoparticles for targeted delivery in tumors and generation of high levels of reactive oxygen species, which can result in increased hypoxia levels for effective cleavage of azobenzene bonds to improve gene editing efficiency and reduce toxic side effects with light irradiation. Moreover, dual targeting HIF-1α and PD-L1 in the anoxic microenvironments can overcome hypoxia resistance and remodel immune microenvironments, which reduces tumor plasticity and resistance to photodynamic and immunotherapy. In summary, a light-enhanced hypoxia responsive nanocomposite is developed for controllable gene editing which holds great promise for synergistic hypoxia-resistant photodynamic and immunotherapy.


Assuntos
Compostos Azo , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Edição de Genes , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Nanopartículas/química , Imunoterapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Microambiente Tumoral
3.
Addict Biol ; 28(9): e13314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644891

RESUMO

Methamphetamine (Meth) withdrawal elicits anxiety, which is a public health concern with limited therapeutic options. Previous studies implied a strong correlation between mPFC and Meth withdrawal. Here, we examined the role of Gegen-Qinlian decoction (GQD) in Meth withdrawal anxiety and explored potential therapeutic targets in mPFC. We found that intra-gastric administration of GQD during the withdrawal period efficiently alleviated anxiety-like behaviours in Meth-withdrawn mice. Further, GQD could restore Meth withdrawal-triggered pathway of GABAergic interneurons (GABA IN)-pyramidal neurons (PN) in the mPFC of Meth-withdrawn mice, especially the prelimbic cortex (PrL) sub-region and PV-positive GABA IN. While, GQD had no obvious effects on the glial cells in the mPFC of Meth-withdrawn mice. By transcriptomic analysis and validation of several gene candidates, we found that genes in the MAPK signalling pathway, especially those related to heat shock proteins, including Hspa1a, Hspa1b and Hspb1, might be GQD-targeting genes in mPFC to treat Meth withdrawal anxiety, as indicated that these genes were up-regulated by Meth withdrawal but rescued by GQD in mPFC. Collectively, our findings identified for the first time that GQD could efficiently alleviate Meth withdrawal anxiety, partially through regulating the local GABA IN-PN pathway and transcriptomic profile of mPFC. The present study confirms that TCM, such as GQD, will be a desirable therapeutic approach in the treatment of drug addiction and related emotional deficits.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Medicina Tradicional Chinesa , Ansiedade/tratamento farmacológico , Células Piramidais , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Interneurônios , Ácido gama-Aminobutírico
4.
Acta Pharm Sin B ; 12(11): 4224-4234, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386466

RESUMO

Near-infrared (NIR)-light-triggered nanomedicine, including photodynamic therapy (PDT) and photothermal therapy (PTT), is growing an attractive approach for cancer therapy due to its high spatiotemporal controllability and minimal invasion, but the tumor eradication is limited by the intrinsic anti-stress response of tumor cells. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on oxygen-deficient titania (TiO2-x ) for mild NIR-phototherapy. In tumor microenvironment, the overexpressed hyaluronidase (HAase) and glutathione (GSH) can readily destroy hyaluronic acid (HA) and disulfide bond and releases the Cas9/sgRNA from TiO2-x to target the stress alleviating regulators, i.e., nuclear factor E2-related factor 2 (NRF2) and heat shock protein 90α (HSP90α), thereby reducing the stress tolerance of tumor cells. Under subsequent NIR light illumination, the TiO2-x demonstrates a higher anticancer effect both in vitro and in vivo. This strategy not only provides a promising modality to kills cancer cells in a minimal side-effects manner by interrupting anti-stress pathways but also proposes a general approach to achieve controllable gene editing in tumor region without unwanted genetic mutation in normal environments.

5.
Small ; 18(45): e2203942, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156383

RESUMO

As a promising therapeutic strategy against cancer, immunotherapy faces critical challenges, especially in solid tumors. Immune checkpoint blockade therapy, particularly blocking the interaction of the programmed cell death 1 (PD1)-PD1 ligand 1 (PD-L1) axis, can reverse the suppression of T cells so as to destroy tumor cells and exert antitumor effects. Here, a strategy of multiple activation of immune pathways is developed, to provide supporting evidence for potential antitumor therapies. Briefly, a pH/glutathione responsive drug-loading hollow-manganese dioxide (H-MnO2 )-based chlorine6 (Ce6)-modified DNAzyme therapeutic nanosystem for the combination of gene therapy and immunotherapy is established. The H-MnO2 nanoparticles could efficiently deliver the DNAzyme and glycyrrhizic acid (GA) to enhance the tumor target effects. In the tumor microenvironments, the biodegradation of H-MnO2 via pH-induced hydrolyzation allows the release of guest DNAzyme payloads and host Mn2+ ions, which serve as PD-L1 mRNA-targeting reagent and require DNAzyme cofactors for activating gene therapy. In addition, Mn2+ is also associated with the immune activation of thcGAS-STING pathway. Auxiliary photosensitizers Ce6 and GA could produce reactive oxygen species, resulting in immunogenic cell death. Overall, this study provides a general strategy for targeted gene inhibition and GA release, which is valuable for the development of potential tumor immunotherapies.


Assuntos
DNA Catalítico , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Compostos de Manganês , Antígeno B7-H1 , DNA Catalítico/metabolismo , Óxidos , Fotoquimioterapia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/terapia , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral
6.
Zhonghua Nan Ke Xue ; 14(5): 406-10, 2008 May.
Artigo em Chinês | MEDLINE | ID: mdl-18572857

RESUMO

OBJECTIVE: To explore the effect of subchronic exposure to acrylamide on the reproduction and testis endocrine function of rats. METHODS: Forty healthy adult male SD rats were randomly divided into 4 groups of equal number, exposed to acrylamide at the dose of 0, 4, 10 and 18 mg/(kg x d) respectively for 9 weeks, and then subjected to the determination of the hindlimb landing foot splay, sperm vitality and morphology, the activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) in the testis homogenate, and the levels of testosterone (T) and estradiol (E2) in the serum and testis homogenate. Based on the primary Leydig cell culture models exposed to acrylamide of 0, 0.1, 0.75, 4 and 8 mmol/L, the activity of Leydig cells was measured by the CCK-8 method. RESULTS: Following acrylamide exposure, the hindlimb landing foot splay increased markedly with dose increase (P < 0.01). The rates of sperm vitality were (6.86 +/- 5.46)%, (65.43 +/- 5.16)%, (60.86 +/- 4.26)% and (46.86 +/- 2.73)% in the exposed groups, significantly lower than in the control (P < 0.01); the rates of abnormal sperm were (39.00 +/- 10.95)%, (35.43 +/- 7.54)%, (45.71 +/- 13.28)% and (56.71 +/- 17.01)%, significantly increased in the 10 and 18 mg/(kg x d) groups (P < 0.05); ACP activities were (82.93 +/- 11.05), (73.52 +/- 8.77), (77.67 +/- 3.04) and (68.56 +/- 3.09) U/g prot, showing a decreasing tendency, while ALP activities were (0.96 +/- 0.15), (1.07 +/- 0.22), (1.12 +/- 0.22) and (0.74 +/- 0.10) U/g prot, displaying a tendency of first increasing and then decreasing. Both ACP and ALP activities were inhibited significantly in the 18 mg/(kg x d) group as compared with the control (P < 0.05). A marked reduction was noted in T levels in the serum, (13.44 +/- 4.76), (7.69 +/- 3.84), (5.23 +/- 1.42) and (1.36 +/- 0.86) ng/ml, as well as in the testis homogenate, (4.95 +/- 1.64), (3.01 +/- 0.76), (2.44 +/- 0.91) and (0.85 +/- 0.49) ng/mg prot, (P < 0.01), but no significant changes were observed in 17beta-E2 levels. After 24 hours exposure to acrylamide, the optical densities were 0.82 +/- 0.06, 0.56 +/- 0.07, 0.44 +/- 0.06, 0.26 +/- 0.03 and 0.45 +/- 0.21, showing an evident inhibition of the activity of Leydig cells at the dose of 0.1, 0.75, 4 and 8 mmol/L (P < 0.01). CONCLUSION: Subchronic exposure to acrylamide could affect the normal development of sperm, cause changes of the activity of some enzymes in the testis and significantly influence hindlimb motor coordination. Acrylamide directly damages Leydig cells and affects the endocrine function of the testis.


Assuntos
Acrilamida/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Epididimo/citologia , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Contagem de Espermatozoides , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Testículo/citologia , Testículo/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Testes de Toxicidade Crônica
7.
Zhonghua Nan Ke Xue ; 14(2): 159-62, 2008 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-18390183

RESUMO

Acrylamide is a common chemical material, extensively used in industry and scientific experiments. Recently, it has been reported that starchy food cooked at high temperature can produce acrylamide. Acrylamide monomer has several toxic effects and the extensive concern for its toxicity has arisen with the finding of acrylamide formation in some processed foods. Researches have shown that acrylamide monomer can cause reproductive toxicity, including toxic effects on male reproductive behavior, male reproductive endocrine function and spermatogenesis. The mechanisms may include the effects of acrylamide on Leydig cells, the formation of motor protein/ chromosomal/DNA alkylation and damage by oxidative stress.


Assuntos
Acrilamida/toxicidade , Genitália Masculina/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Genitália Masculina/fisiologia , Masculino , Comportamento Sexual Animal/fisiologia , Espermatogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA