Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 90, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664405

RESUMO

Gingipains are protease virulence factors produced by Porphyromonas gingivalis, a Gram-negative bacterium best known for its role in chronic periodontitis. Gingipains were recently identified in the middle temporal gyrus of postmortem Alzheimer's disease (AD) brains, where gingipain load correlated with AD diagnosis and tau and ubiquitin pathology. Since AD and Parkinson's disease (PD) share some overlapping pathologic features, including nigral pathology and Lewy bodies, the current study explored whether gingipains are present in the substantia nigra pars compacta of PD brains. In immunohistochemical techniques and multi-channel fluorescence studies, gingipain antigens were abundant in dopaminergic neurons in the substantia nigra of both PD and neurologically normal control brains. 3-dimensional reconstructions of Lewy body containing neurons revealed that gingipains associated with the periphery of alpha-synuclein aggregates but were occasionally observed inside aggregates. In vitro proteomic analysis demonstrated that recombinant alpha-synuclein is cleaved by lysine-gingipain, generating multiple alpha-synuclein fragments including the non-amyloid component fragments. Immunogold electron microscopy with co-labeling of gingipains and alpha-synuclein confirmed the occasional colocalization of gingipains with phosphorylated (pSER129) alpha-synuclein. In dopaminergic neurons, gingipains localized to the perinuclear cytoplasm, neuromelanin, mitochondria, and nucleus. These data suggest that gingipains localize in dopaminergic neurons in the substantia nigra and interact with alpha-synuclein.

2.
J Comp Neurol ; 531(8): 888-920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002560

RESUMO

The dorsal striatum forms a central node of the basal ganglia interconnecting the neocortex and thalamus with circuits modulating mood and movement. Striatal projection neurons (SPNs) include relatively intermixed populations expressing D1-type or D2-type dopamine receptors (dSPNs and iSPNs) that give rise to the direct (D1) and indirect (D2) output systems of the basal ganglia. Overlaid on this organization is a compartmental organization, in which a labyrinthine system of striosomes made up of sequestered SPNs is embedded within the larger striatal matrix. Striosomal SPNs also include D1-SPNs and D2-SPNs, but they can be distinguished from matrix SPNs by many neurochemical markers. In the rodent striatum the key signaling molecule, DARPP-32, is a exception to these compartmental expression patterns, thought to befit its functions through opposite actions in both D1- and D2-expressing SPNs. We demonstrate here, however, that in the dorsal human striatum, DARPP-32 is concentrated in the neuropil and SPNs of striosomes, especially in the caudate nucleus and dorsomedial putamen, relative to the matrix neuropil in these regions. The generally DARPP-32-poor matrix contains scattered DARPP-32-positive cells. DARPP-32 cell bodies in both compartments proved negative for conventional intraneuronal markers. These findings raise the potential for specialized DARPP-32 expression in the human striosomal system and in a set of DARPP-32-positive neurons in the matrix. If DARPP-32 immunohistochemical positivity predicts differential functional DARPP-32 activity, then the distributions demonstrated here could render striosomes and dispersed matrix cells susceptible to differential signaling through cAMP and other signaling systems in health and disease. DARPP-32 is highly concentrated in cells and neuropil of striosomes in post-mortem human brain tissue, particularly in the dorsal caudate nucleus. Scattered DARPP-32-positive cells are found in the human striatal matrix. Calbindin and DARPP-32 do not colocalize within every spiny projection neuron in the dorsal human caudate nucleus.


Assuntos
Núcleo Caudado , Corpo Estriado , Humanos , Corpo Estriado/metabolismo , Núcleo Caudado/metabolismo , Gânglios da Base , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neurópilo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA