Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasite ; 31: 60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39353100

RESUMO

Diarrhea caused by zoonotic pathogens is one of the most common diseases in dairy calves, threatening the health of young animals. Humans are also at risk, in particular children. To explore the pathogens causing diarrhea in dairy calves, the present study applied PCR-based sequencing tools to investigate the occurrence and molecular characteristics of three parasites (Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi) and three bacterial pathogens (Escherichia coli, Clostridium perfringens, and Salmonella spp.) in 343 fecal samples of diarrheic dairy calves from five farms in Lingwu County, Ningxia Hui Autonomous Region, China. The total positive rate of these pathogens in diarrheic dairy calves was 91.0% (312/343; 95% CI, 87.9-94.0), with C. perfringens (61.5%, 211/343; 95% CI, 56.3-66.7) being the dominant one. Co-infection with two to five pathogens was found in 67.3% (231/343; 95% CI, 62.4-72.3) of investigated samples. There were significant differences (p < 0.05) in the positive rates of Cryptosporidium spp. and diarrheagenic E. coli among farms, age groups, and seasons. Two Cryptosporidium species (C. parvum and C. bovis) and five gp60 subtypes of C. parvum (IIdA15G1, IIdA20G1, IIdA19G1, IIdA14G1, and a novel IIdA13G1) were identified. Two assemblages (assemblage E and zoonotic assemblage A) of G. duodenalis and six ITS genotypes of E. bieneusi (J, Henan-IV, EbpC, I, EbpA, and ESH-01) were observed. Four virulence genes (eaeA, stx1, stx2, and st) of diarrheagenic E. coli and one toxin type (type A) of C. perfringens were detected. Our study enriches our knowledge on the characteristics and zoonotic potential of diarrhea-related pathogens in dairy calves.


Title: Caractérisation moléculaire des protozoaires parasites zoonotiques courants et des bactéries responsables de diarrhée chez les veaux laitiers dans la région autonome Hui du Ningxia, en Chine. Abstract: La diarrhée causée par des agents pathogènes zoonotiques est l'une des maladies les plus courantes chez les veaux laitiers, menaçant la santé des jeunes animaux. Ceci est également un risque pour la santé humaine, en particulier les enfants. Pour explorer les agents pathogènes responsables de la diarrhée chez les veaux laitiers, cette étude a utilisé des outils de séquençage basés sur la PCR pour étudier l'occurrence et les caractères moléculaires de trois parasites (Cryptosporidium spp., Giardia duodenalis et Enterocytozoon bieneusi) et de trois agents pathogènes bactériens (Escherichia coli, Clostridium perfringens et Salmonella spp.) dans 343 échantillons fécaux de veaux laitiers diarrhéiques provenant de cinq fermes du comté de Lingwu, région autonome Hui du Ningxia, en Chine. Le taux total positif de ces pathogènes chez les veaux laitiers diarrhéiques était de 91,0 % (312/343; IC à 95 %, 87,9­94,0), et C. perfringens (61,5 %, 211/343; IC à 95 %, 56,3­66,7) était le plus répandu. Une co-infection avec deux à cinq pathogènes a été trouvée dans 67,3 % (231/343; IC à 95 %, 62,4­72,3) des échantillons étudiés. Il y avait des différences significatives (p < 0,05) dans les taux positifs de Cryptosporidium spp. et d'E. coli diarrhéogènes entre les fermes, les groupes d'âge et les saisons. Deux espèces de Cryptosporidium (C. parvum et C. bovis) et cinq sous-types de gp60 de C. parvum (IIdA15G1, IIdA20G1, IIdA19G1, IIdA14G1 et un nouveau, IIdA13G1) ont été identifiés. Deux assemblages (assemblage E et assemblage zoonotique A) de G. duodenalis et six génotypes ITS d'E. bieneusi (J, Henan-IV, EbpC, I, EbpA et ESH-01) ont été observés. Quatre gènes de virulence (eaeA, stx1, stx2 et st) d'E. coli diarrhéogènes et un type de toxine (type A) de C. perfringens ont été détectés. Notre étude enrichit les connaissances sur les caractères et le potentiel zoonotique des agents pathogènes liés à la diarrhée chez les veaux laitiers.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium , Diarreia , Enterocytozoon , Fezes , Giardia lamblia , Zoonoses , Animais , Bovinos , Diarreia/veterinária , Diarreia/parasitologia , Diarreia/microbiologia , Diarreia/epidemiologia , China/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , Giardia lamblia/genética , Giardia lamblia/isolamento & purificação , Giardia lamblia/classificação , Fezes/parasitologia , Fezes/microbiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/classificação , Giardíase/veterinária , Giardíase/epidemiologia , Giardíase/parasitologia , Coinfecção/veterinária , Coinfecção/epidemiologia , Coinfecção/parasitologia , Coinfecção/microbiologia , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/genética , Clostridium perfringens/classificação , Salmonella/isolamento & purificação , Salmonella/genética , Salmonella/classificação , Humanos , Reação em Cadeia da Polimerase/veterinária , Indústria de Laticínios
3.
Acta Trop ; 249: 107057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913972

RESUMO

Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.


Assuntos
Apoptose , Criptosporidiose , Cryptosporidium parvum , Proteína Forkhead Box M1 , MicroRNAs , Humanos , Apoptose/genética , Criptosporidiose/genética , Criptosporidiose/patologia , Cryptosporidium parvum/genética , MicroRNAs/genética , Proteína Forkhead Box M1/genética
4.
Parasite ; 30: 39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37754780

RESUMO

Enterocytozoon bieneusi is a common pathogen in humans and various animals, threatening the breeding industry and public health. However, there is limited information on the molecular characteristics of E. bieneusi in yaks, an economically important animal mainly domesticated in the Qinghai Tibet Plateau in China. In the present study, nested PCR targeting the ITS gene region was applied to investigate the positive rates and genetic diversity of E. bieneusi in 223 faecal samples of yaks from three locations in Ganzi Tibetan Autonomous Prefecture, Sichuan Province. The total positive rate of E. bieneusi was 23.8% (53/223). Significant differences in positive rates were identified among yaks from three locations (χ2 = 8.535, p = 0.014) and four age groups (χ2 = 17.259, p = 0.001), with the highest positive rates in yaks from Yajiang and aged < 6 months, respectively. Sequence analysis identified seven known (EbpC, LW1, LQ10, PigEBITS5, ESH-01, J and BEB4) and five novel (Ganzi1-5) ITS genotypes. Phylogenetic analysis showed eight genotypes (EbpC, LW1, LQ10, PigEBITS5, ESH-01, Ganzi1, Ganzi2 and Ganzi4) in group 1 and three genotypes (J, BEB4 and Ganzi3) in group 2, indicating high genotype diversity and zoonotic potential of E. bieneusi in yaks from Ganzi. Considering the increasing zoonotic genotypes in yaks in the present study compared with previous findings, interventions should be developed to reduce the potential transmission of E. bieneusi between humans and animals.


Title: Grande diversité génotypique et potentiel zoonotique d'Enterocytozoon bieneusi chez les yaks (Bos grunniens) de la préfecture autonome tibétaine de Ganzi, province du Sichuan. Abstract: Enterocytozoon bieneusi est un agent pathogène courant chez l'homme et chez divers animaux, menaçant l'industrie de l'élevage et la santé publique. Cependant, il existe peu d'informations sur les caractéristiques moléculaires d'E. bieneusi chez les yaks, un animal important pour l'économie, principalement domestiqué sur le plateau du Qinghai au Tibet en Chine. Dans la présente étude, une PCR imbriquée ciblant la région du gène ITS a été appliquée pour étudier la positivité et la diversité génétique d'E. bieneusi dans 223 échantillons fécaux de yaks provenant de trois sites de la préfecture autonome tibétaine de Ganzi, province du Sichuan. Le taux total de positivité pour E. bieneusi était de 23,8 % (53/223). Des différences significatives dans les taux positifs ont été identifiées parmi les yaks de trois emplacements (χ2 = 8,535, P = 0,014) et de quatre groupes d'âge (χ2 = 17,259, P = 0,001), avec les taux positifs les plus élevés respectivement chez les yaks de Yajiang et ceux âgés de moins de 6 mois. L'analyse de séquence a identifié sept génotypes ITS connus (EbpC, LW1, LQ10, PigEBITS5, ESH-01, J et BEB4) et cinq nouveaux (Ganzi1­5). L'analyse phylogénétique a montré huit génotypes (EbpC, LW1, LQ10, PigEBITS5, ESH-01, Ganzi1, Ganzi2 et Ganzi4) dans le groupe 1 et trois génotypes (J, BEB4 et Ganzi3) dans le groupe 2, indiquant une diversité génotypique élevée et un potentiel zoonotique d'E. bieneusi chez les yaks de Ganzi. Compte tenu de l'augmentation des génotypes zoonotiques chez les yaks dans la présente étude par rapport aux résultats précédents, des interventions devraient être développées pour réduire la transmission potentielle d'E. bieneusi entre les humains et les animaux.


Assuntos
Enterocytozoon , Animais , Humanos , Bovinos , Enterocytozoon/genética , Filogenia , Tibet/epidemiologia , Melhoramento Vegetal , Genótipo , China/epidemiologia
5.
Acta Trop ; 243: 106927, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080266

RESUMO

Cryptosporidium spp. are protozoan parasites that mainly inhabit intestinal epithelial cells, causing diarrheal diseases in humans and a great number of animals. Cryptosporidium parvum is the most common zoonotic species, responsible for nearly 45% of human cryptosporidiosis worldwide. Understanding the interaction mechanisms between C. parvum and host gastrointestinal epithelial cells has significant implications to control cryptosporidiosis. One up-regulated circRNA ciRS-7 was found previously by our group to promote in vitro propagation of C. parvum in HCT-8 cells. In the present study, miR-135a-5p, was found to be a miRNA target of ciRS-7. Cryptosporidium parvum infection induced significantly down-regulation of miR-135a-5p and dramatic up-regulation of its potential target stat1 gene at mRNA and protein levels. Dual luciferase reporter assays validated the physical interactions between miR-135a-5p and stat1, and between ciRS-7 and miR-135a-5p. Further study revealed that ciRS-7 could sponge miR-135a-5p to positively regulate the protein levels of STAT1 and phosphorylated STAT1 (p-STAT1) and thus promote C. parvum propagation in HCT-8 cells. Our findings further reveal the mystery of regulatory roles of host circRNAs during Cryptosporidium infection, and provide a novel insight to develop strategies to control cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , MicroRNAs , Animais , Humanos , Linhagem Celular Tumoral , Criptosporidiose/genética , Cryptosporidium/genética , Cryptosporidium parvum/genética , MicroRNAs/genética , RNA Circular/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
6.
Int Immunopharmacol ; 118: 109994, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37098656

RESUMO

Alzheimer's disease (AD) is a common chronic neurodegenerative disease. Some studies have suggested that dysregulation of microglia activation and the resulting neuroinflammation play an important role in the development of AD pathology. Activated microglia have both M1 and M2 phenotypes and inhibition of M1 phenotype while stimulating M2 phenotype has been considered as a potential treatment for neuroinflammation-related diseases. Baicalein is a class of flavonoids with anti-inflammatory, antioxidant and other biological activities, but its role in AD and the regulation of microglia are limited. The purpose of this study was to investigate the effect of baicalein on the activation of microglia in AD model mice and the related molecular mechanism. Our results showed that baicalein significantly improved the learning and memory ability and AD-related pathology of 3 × Tg-AD mice, inhibited the level of pro-inflammatory factors TNF-α, IL-1ß and IL-6, promoted the production of anti-inflammatory factors IL-4 and IL-10, and regulated the microglia phenotype through CX3CR1/NF-κB signaling pathway. In conclusion, baicalein can regulate the phenotypic transformation of activated microglia and reduce neuroinflammation through CX3CR1/NF-κB pathway, thereby improving the learning and memory ability of 3 × Tg-AD mice.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Microglia , Anti-Inflamatórios/farmacologia , Receptor 1 de Quimiocina CX3C/metabolismo
7.
Parasitol Res ; 122(4): 989-996, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879147

RESUMO

Cryptosporidium parvum is an important apicomplexan parasite causing severe diarrhea in both humans and animals. Calmodulin (CaM), a multifunctional and universal calcium-binding protein, contributes to the growth and development of apicomplexan parasites, but the role of CaM in C. parvum remains unknown. In this study, the CaM of C. parvum encoded by the cgd2_810 gene was expressed in Escherichia coli, and the biological functions of CpCaM were preliminarily investigated. The transcriptional level of the cgd2_810 gene peaked at 36 h post infection (pi), and the CpCaM protein was mainly located around the nucleus of the whole oocysts, in the middle of sporozoites and around the nucleus of merozoites. Anti-CpCaM antibody reduced the invasion of C. parvum sporozoites by 30.69%. The present study indicates that CpCaM is potentially involved in the growth of C. parvum. Results of the study expand our knowledge on the interaction between host and Cryptosporidium.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Criptosporidiose/parasitologia , Oocistos/metabolismo , Esporozoítos/metabolismo
8.
Parasit Vectors ; 16(1): 28, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694228

RESUMO

BACKGROUND: Neospora caninum infection is a major cause of abortion in cattle, which results in serious economic losses to the cattle industry. However, there are no effective drugs or vaccines for the control of N. caninum infections. There is increasing evidence that microRNAs (miRNAs) are involved in many physiological and pathological processes, and dysregulated expression of host miRNAs and the biological implications of this have been reported for infections by various protozoan parasites. However, to our knowledge, there is presently no published information on host miRNA expression during N. caninum infection. METHODS: The expression profiles of miRNAs were investigated by RNA sequencing (RNA-seq) in caprine endometrial epithelial cells (EECs) infected with N. caninum at 24 h post infection (pi) and 48 hpi, and the functions of differentially expressed (DE) miRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The transcriptome data were validated by using quantitative real-time polymerase chain reaction. One of the upregulated DEmiRNAs, namely chi-miR-146a, was selected to study the effect of DEmiRNAs on the propagation of N. caninum tachyzoites in caprine EECs. RESULTS: RNA-seq showed 18 (17 up- and one downregulated) and 79 (54 up- and 25 downregulated) DEmiRNAs at 24 hpi and 48 hpi, respectively. Quantitative real-time polymerase chain reaction analysis of 13 randomly selected DEmiRNAs (10 up- and three downregulated miRNAs) confirmed the validity of the RNA-seq data. A total of 7835 messenger RNAs were predicted to be potential targets for 66 DEmiRNAs, and GO and KEGG enrichment analysis of these predicted targets revealed that DEmiRNAs altered by N. caninum infection may be involved in host immune responses (e.g. Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-ß signaling pathway, mitogen-activated protein kinase signaling pathway) and metabolic pathways (e.g. lysine degradation, insulin signaling pathway, AMP-activated protein kinase signaling pathway, Rap1 signaling pathway, calcium signaling pathway). Upregulated chi-miR-146a was found to promote N. caninum propagation in caprine EECs. CONCLUSIONS: This is, to our knowledge, the first report on the expression profiles of host miRNAs during infection with N. caninum, and shows that chi-miR-146a may promote N. caninum propagation in host cells. The novel findings of the present study should help to elucidate the interactions between host cells and N. caninum.


Assuntos
MicroRNAs , Neospora , Animais , Bovinos , MicroRNAs/genética , Transcriptoma , Cabras , Imunidade
9.
Parasit Vectors ; 15(1): 297, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35999576

RESUMO

BACKGROUND: The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal-fetal interface. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underlying epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs (lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs during N. caninum infection has not been reported. METHODS: RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs (mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets. RESULTS: RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 (252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respectively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission (e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). CONCLUSIONS: This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection.


Assuntos
Coccidiose , Neospora , RNA Longo não Codificante , Animais , Coccidiose/veterinária , Citocinas/genética , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Cabras , Humanos , Neospora/genética , Neospora/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Citocinas/genética , Análise de Sequência de RNA
10.
Parasit Vectors ; 15(1): 274, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915458

RESUMO

BACKGROUND: Infection of Neospora caninum, an important obligate intracellular protozoan parasite, causes reproductive dysfunctions (e.g. abortions) in ruminants (e.g. cattle, sheep and goats), leading to serious economic losses of livestock worldwide, but the pathogenic mechanisms of N. caninum are poorly understood. Mitochondrial dysfunction has been reported to be closely associated with pathogenesis of many infectious diseases. However, the effect of N. caninum infection on the mitochondrial function of hosts remains unclear. METHODS: The effects of N. caninum infection on mitochondrial dysfunction in caprine endometrial epithelial cells (EECs), including intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) contents, mitochondrial DNA (mtDNA) copy numbers and ultrastructure of mitochondria, were studied by using JC-1, DCFH-DA, ATP assay kits, quantitative real-time polymerase chain reaction (RT-qPCR) and transmission electron microscopy, respectively, and the regulatory roles of sirtuin 1 (SIRT1) on mitochondrial dysfunction, autophagy and N. caninum propagation in caprine EECs were investigated by using two drugs, namely resveratrol (an activator of SIRT1) and Ex 527 (an inhibitor of SIRT1). RESULTS: The current study found that N. caninum infection induced mitochondrial dysfunction of caprine EECs, including accumulation of intracellular ROS, significant reductions of MMP, ATP contents, mtDNA copy numbers and damaged ultrastructure of mitochondria. Downregulated expression of SIRT1 was also detected in caprine EECs infected with N. caninum. Treatments using resveratrol and Ex 527 to caprine EECs showed that dysregulation of SIRT1 significantly reversed mitochondrial dysfunction of cells caused by N. caninum infection. Furthermore, using resveratrol and Ex 527, SIRT1 expression was found to be negatively associated with autophagy induced by N. caninum infection in caprine EECs, and the intracellular propagation of N. caninum tachyzoites in caprine EECs was negatively affected by SIRT1 expression. CONCLUSIONS: These results indicated that N. caninum infection induced mitochondrial dysfunction by downregulating SIRT1, and downregulation of SIRT1 promoted cell autophagy and intracellular proliferation of N. caninum tachyzoites in caprine EECs. The findings suggested a potential role of SIRT1 as a target to develop control strategies against N. caninum infection.


Assuntos
Coccidiose , Neospora , Trifosfato de Adenosina , Animais , Bovinos , Coccidiose/parasitologia , Coccidiose/veterinária , DNA Mitocondrial/genética , Células Epiteliais , Feminino , Cabras , Mitocôndrias/genética , Neospora/genética , Gravidez , Espécies Reativas de Oxigênio , Resveratrol , Ovinos/genética , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA