Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 190: 106002, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666163

RESUMO

UDP-Xyl, a nucleotide sugar involved in the biosynthesis of various glycoconjugates, is difficult to obtain and quite expensive. Biocatalysis using a one-pot multi-enzyme cascade is one of the most valuable biotransformation processes widely used in the industry. Herein, two enzymes, UDP-glucose (UDP-Glc) dehydrogenase (CGIUGD) and UDP-Xyl synthase (CGIUXS) from the Pacific oyster Crassostrea gigas, which are coupled together for the biotransformation of UDP-Xyl, were characterized. The optimum pH was determined to be pH 9.0 for CGIUGD and pH 7.5 for CGIUXS. Both enzymes showed the highest activity at 37 °C. Neither enzyme is metal ion-dependent. On this basis, a single factor and orthogonal test were applied to optimize the condition of biotransformation of UDP-Xyl from UDP-Glc. Orthogonal design L9 (33) was conducted to optimize processing variables of enzyme amount, pH, and temperature. The conversion of UDP-Xyl was selected as an analysis indicator. Optimum variables were the ratio of CGIUGD to CGIUXS of 2:5, enzymatic pH of 8.0, and temperature of 37 °C, which is confirmed by three repeated validation experiments. The UDP-Xyl conversion was 69.921% in a 1 mL reaction mixture by optimized condition for 1 h. This is the first report for the biosynthesis of UDP-Xyl from oyster enzymes.


Assuntos
Biocatálise , Crassostrea/genética , Ligases/química , Oxirredutases/química , Difosfato de Uridina/síntese química , Animais , Crassostrea/enzimologia , Ligases/genética , Oxirredutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Difosfato de Uridina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA