Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413192

RESUMO

The dynamics and folding of potassium channel pore domain monomers are connected to the kinetics of tetramer assembly. In all-atom molecular dynamics simulations of Kv1.2 and KcsA channels, monomers adopt multiple nonnative conformations while the three helices remain folded. Consistent with this picture, NMR studies also find the monomers to be dynamic and structurally heterogeneous. However, a KcsA construct with a disulfide bridge engineered between the two transmembrane helices has an NMR spectrum with well-dispersed peaks, suggesting that the monomer can be locked into a native-like conformation that is similar to that observed in the folded tetramer. During tetramerization, fluoresence resonance energy transfer (FRET) data indicate that monomers rapidly oligomerize upon insertion into liposomes, likely forming a protein-dense region. Folding within this region occurs along separate fast and slow routes, with τfold ∼40 and 1,500 s, respectively. In contrast, constructs bearing the disulfide bond mainly fold via the faster pathway, suggesting that maintaining the transmembrane helices in their native orientation reduces misfolding. Interestingly, folding is concentration independent despite the tetrameric nature of the channel, indicating that the rate-limiting step is unimolecular and occurs after monomer association in the protein-dense region. We propose that the rapid formation of protein-dense regions may help with the assembly of multimeric membrane proteins by bringing together the nascent components prior to assembly. Finally, despite its name, the addition of KcsA's C-terminal "tetramerization" domain does not hasten the kinetics of tetramerization.


Assuntos
Canal de Potássio Kv1.2/química , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular
2.
J Comput Chem ; 35(27): 1997-2004, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25130509

RESUMO

CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments.


Assuntos
Membrana Celular/química , Biologia Computacional , Simulação de Dinâmica Molecular , Software , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Escherichia coli/química , Internet , Lipídeos/química , Modelos Moleculares , Estrutura Molecular , Proteínas/química
3.
J Phys Chem B ; 118(16): 4315-25, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24689790

RESUMO

Phosphoinositides (PIPs), phosphorylated derivatives of phosphatidylinositol (PI), are essential regulatory lipids involved in various cellular processes, including signal transduction, membrane trafficking, and cytoskeletal remodeling. To gain insight into the protein-PIPs recognition process, it is necessary to study the inositol ring orientation (with respect to the membrane) of PIPs with different phosphorylation states. In this study, 8 PIPs (3 PIP, 2 PIP2, and 3 PIP3) with different phosphorylation and protonation sites have been separately simulated in two mixed bilayers (one with 20% phosphatidylserine (PS) lipids and another with PS lipids switched to phosphatidylcholine (PC) lipids), which roughly correspond to yeast membranes. Uniformity of the bilayer properties including hydrophobic thickness, acyl chain order parameters, and heavy atom density profiles is observed in both PS-contained and PC-enriched membranes due to the same hydrophobic core composition. The relationship between the inositol ring orientation (tilt and rotation angles) and its solvent-accessible surface area indicates that the orientation is mainly determined by its solvation energy. Different PIPs exhibit a clear preference in the inositol ring rotation angle. Surprisingly, a larger proportion of PIPs inositol rings stay closer to the surface of PS-contained membranes compared to PC-enriched ones. Such a difference is rationalized with the formation of more hydrogen bonds between the PS/PI headgroups and the PIPs inositol rings in PS-contained membranes. This hydrogen bond network could be functionally important; thus, the present results can potentially add important and detailed features into the existing protein-PIPs recognition mechanism.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilinositóis/química , Entropia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosfatidilcolinas/química , Fosfatidilserinas/química , Fosforilação , Prótons , Rotação , Solventes/química , Leveduras/química
4.
J Comput Chem ; 32(14): 3135-41, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21815173

RESUMO

Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.


Assuntos
Carboidratos/química , Glicoproteínas/química , Simulação de Dinâmica Molecular , Algoritmos , Modelos Moleculares , Eletricidade Estática
5.
J Phys Chem B ; 115(19): 6157-65, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21513278

RESUMO

Single-molecule fluorescence measurements have been used to characterize membrane properties, and recently showed a linear evolution of the fluorescent lipid analogue BODIPY-PC toward small tilt angles in Langmuir-Blodgett monolayers as the lateral surface pressure is increased. In this work, we have performed comparative molecular dynamics (MD) simulations of BODIPY-PC in DPPC (dipalmitoylphosphatidylcholine) monolayers and bilayers at three surface pressures (3, 10, and 40 mN/m) to explore (1) the microscopic correspondence between monolayer and bilayer structures, (2) the fluorophore's position within the membrane, and (3) the microscopic driving forces governing the fluorophore's tilting. The MD simulations reveal very close agreement between the monolayer and bilayer systems in terms of the fluorophore's orientation and lipid chain order, suggesting that monolayer experiments can be used to approximate bilayer systems. The simulations capture the trend of reduced tilt angle of the fluorophore with increasing surface pressure, as seen in the experimental results, and provide detailed insights into fluorophore location and orientation, not obtainable in the experiments. The simulations also reveal that the enthalpic contribution is dominant at 40 mN/m, resulting in smaller tilt angles of the fluorophore, and the entropy contribution is dominant at lower pressures, resulting in larger tilt angles.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Compostos Heterocíclicos com 3 Anéis/química , Bicamadas Lipídicas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA