Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4812, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558654

RESUMO

Branched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice. Structure-activity relationship studies led to identification of a thiazole series of BDK inhibitors; however, these inhibitors did not improve metabolism in mice upon chronic administration. While the thiophenes demonstrated sustained branched chain ketoacid (BCKA) lowering and reduced BDK protein levels, the thiazoles increased BCKAs and BDK protein levels. Thiazoles increased BDK proximity to BCKDH-E2, whereas thiophenes reduced BDK proximity to BCKDH-E2, which may promote BDK degradation. Thus, we describe two BDK inhibitor series that possess differing attributes regarding BDK degradation or stabilization and provide a mechanistic understanding of the desirable features of an effective BDK inhibitor.


Assuntos
Aminoácidos de Cadeia Ramificada , Tiofenos , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Fosforilação , Tiofenos/farmacologia , Oxirredutases/metabolismo
2.
Cell Rep ; 42(1): 111947, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640326

RESUMO

Cancer cachexia is a disorder characterized by involuntary weight loss and impaired physical performance. Decline in physical performance of patients with cachexia is associated with poor quality of life, and currently there are no effective pharmacological interventions that restore physical performance. Here we examine the effect of GDF15 neutralization in a mouse model of cancer-induced cachexia (TOV21G) that manifests weight loss and muscle function impairments. With comprehensive assessments, our results demonstrate that cachectic mice treated with the anti-GDF15 antibody mAB2 exhibit body weight gain with near-complete restoration of muscle mass and markedly improved muscle function and physical performance. Mechanistically, the improvements induced by GDF15 neutralization are primarily attributed to increased caloric intake, while altered gene expression in cachectic muscles is restored in caloric-intake-dependent and -independent manners. The findings indicate potential of GDF15 neutralization as an effective therapy to enhance physical performance of patients with cachexia.


Assuntos
Caquexia , Neoplasias , Camundongos , Animais , Caquexia/metabolismo , Qualidade de Vida , Neoplasias/genética , Redução de Peso , Músculos/metabolismo , Músculo Esquelético/metabolismo
3.
Nat Cardiovasc Res ; 1(2): 142-156, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36051854

RESUMO

Some missense gain-of-function mutations in CACNA1C gene, encoding calcium channel CaV1.2, cause a life-threatening form of long QT syndrome named Timothy syndrome, with currently no clinically-effective therapeutics. Here we report that pharmacological targeting of sigma non-opioid intracellular receptor 1 (SIGMAR1) can restore electrophysiological function in iPSC-derived cardiomyocytes generated from patients with Timothy syndrome and two common forms of long QT syndrome, type 1 (LQTS1) and 2 (LQTS2), caused by missense trafficking mutations in potassium channels. Electrophysiological recordings demonstrate that an FDA-approved cough suppressant, dextromethorphan, can be used as an agonist of SIGMAR1, to shorten the prolonged action potential in Timothy syndrome cardiomyocytes and human cellular models of LQTS1 and LQTS2. When tested in vivo, dextromethorphan also normalized the prolonged QT intervals in Timothy syndrome model mice. Overall, our study demonstrates that SIGMAR1 is a potential therapeutic target for Timothy syndrome and possibly other inherited arrhythmias such as LQTS1 and LQTS2.

4.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384713

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Actomiosina/genética , Humanos , Proteínas com Domínio LIM , Mecanotransdução Celular , Proteínas Musculares , Mutação , Miócitos Cardíacos
5.
Elife ; 92020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33200983

RESUMO

The lymphatic vasculature is involved in the pathogenesis of acute cardiac injuries, but little is known about its role in chronic cardiac dysfunction. Here, we demonstrate that angiotensin II infusion induced cardiac inflammation and fibrosis at 1 week and caused cardiac dysfunction and impaired lymphatic transport at 6 weeks in mice, while co-administration of VEGFCc156s improved these parameters. To identify novel mechanisms underlying this protection, RNA sequencing analysis in distinct cell populations revealed that VEGFCc156s specifically modulated angiotensin II-induced inflammatory responses in cardiac and peripheral lymphatic endothelial cells. Furthermore, telemetry studies showed that while angiotensin II increased blood pressure acutely in all animals, VEGFCc156s-treated animals displayed a delayed systemic reduction in blood pressure independent of alterations in angiotensin II-mediated aortic stiffness. Overall, these results demonstrate that VEGFCc156s had a multifaceted therapeutic effect to prevent angiotensin II-induced cardiac dysfunction by improving cardiac lymphatic function, alleviating fibrosis and inflammation, and ameliorating hypertension.


Assuntos
Células Endoteliais/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Angiotensina II/toxicidade , Animais , Biomarcadores , Técnicas de Introdução de Genes , Estudo de Associação Genômica Ampla , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Análise de Sequência de RNA , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/administração & dosagem
6.
Nat Protoc ; 14(10): 2781-2817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31492957

RESUMO

The application of tissue-engineering approaches to human induced pluripotent stem (hiPS) cells enables the development of physiologically relevant human tissue models for in vitro studies of development, regeneration, and disease. However, the immature phenotype of hiPS-derived cardiomyocytes (hiPS-CMs) limits their utility. We have developed a protocol to generate engineered cardiac tissues from hiPS cells and electromechanically mature them toward an adult-like phenotype. This protocol also provides optimized methods for analyzing these tissues' functionality, ultrastructure, and cellular properties. The approach relies on biological adaptation of cultured tissues subjected to biomimetic cues, applied at an increasing intensity, to drive accelerated maturation. hiPS cells are differentiated into cardiomyocytes and used immediately after the first contractions are observed, when they still have developmental plasticity. This starting cell population is combined with human dermal fibroblasts, encapsulated in a fibrin hydrogel and allowed to compact under passive tension in a custom-designed bioreactor. After 7 d of tissue formation, the engineered tissues are matured for an additional 21 d by increasingly intense electromechanical stimulation. Tissue properties can be evaluated by measuring contractile function, responsiveness to electrical stimuli, ultrastructure properties (sarcomere length, mitochondrial density, networks of transverse tubules), force-frequency and force-length relationships, calcium handling, and responses to ß-adrenergic agonists. Cell properties can be evaluated by monitoring gene/protein expression, oxidative metabolism, and electrophysiology. The protocol takes 4 weeks and requires experience in advanced cell culture and machining methods for bioreactor fabrication. We anticipate that this protocol will improve modeling of cardiac diseases and testing of drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Coração/fisiologia , Humanos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia
7.
Nature ; 572(7769): E16-E17, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31363231

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nature ; 556(7700): 239-243, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618819

RESUMO

Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.


Assuntos
Diferenciação Celular , Coração/crescimento & desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Técnicas de Cultura de Tecidos , Adulto , Cálcio/metabolismo , Diferenciação Celular/genética , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Isoproterenol/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Sarcômeros/metabolismo , Transcriptoma
9.
Stem Cell Reports ; 9(1): 50-57, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648896

RESUMO

L-type calcium channel CaV1.2 plays an essential role in cardiac function. The gain-of-function mutations in CaV1.2 have been reported to be associated with Timothy syndrome, a disease characterized by QT prolongation and syndactyly. Previously we demonstrated that roscovitine, a cyclin-dependent kinase (CDK) inhibitor, could rescue the phenotypes in induced pluripotent stem cell-derived cardiomyocytes from Timothy syndrome patients. However, exactly how roscovitine rescued the phenotypes remained unclear. Here we report a mechanism potentially underlying the therapeutic effects of roscovitine on Timothy syndrome cardiomyocytes. Our results using roscovitine analogs and CDK inhibitors and constructs demonstrated that roscovitine exhibits its therapeutic effects in part by inhibiting CDK5. The outcomes of this study allowed us to identify a molecular mechanism whereby CaV1.2 channels are regulated by CDK5. This study provides insights into the regulation of cardiac calcium channels and the development of future therapeutics for Timothy syndrome patients.


Assuntos
Transtorno Autístico/tratamento farmacológico , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Síndrome do QT Longo/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Sindactilia/tratamento farmacológico , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Roscovitina , Sindactilia/metabolismo , Sindactilia/patologia
10.
Stem Cells Transl Med ; 4(5): 468-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769651

RESUMO

Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.


Assuntos
Arritmias Cardíacas/patologia , Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Potenciais de Ação/genética , Transtorno Autístico , Cálcio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Síndrome do QT Longo/patologia , Proteínas Luminescentes/química , Fenótipo , Proteínas Recombinantes de Fusão/química , Sindactilia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA