Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20243, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985803

RESUMO

Increasing numbers of cardiothoracic surgery residents are resigning, without completing their training. This study analyzes how their turnover intention is related to the training environment, and individual psychological factors. Responses by 57 Korean cardiothoracic surgery residents were analyzed. Their levels of depression, anxiety, grit, and empathy, working conditions, the effect of someone's presence to discuss their concerns with, burnout, and turnover intention were identified as the research variables. Descriptive statistical analysis, correlation analysis, and structural equation modeling were used for data analysis. Burnout has the most significant relationship with turnover intention. It has a mediating effect on the influence of depression, grit (sustained interest), and working conditions, over turnover intention. Empathy, and the presence of someone to discuss concerns with, also affect turnover intention directly. The study also confirmed that grit and work satisfaction affect turnover intention indirectly, through burnout. The study identified both individual- and systemic-level factors for an effective training environment, to reduce cardiothoracic surgery residents' tendencies of leaving the residency program, and supporting them for greater satisfaction with their career choice. In order to resolve negative emotions such as burnout and depression, and foster empathy, a human resource development program for the residents' psychological support must be prepared. The program director should be adequately educated to take charge of the training program, oversee the residents' education and welfare, and perform the roles of role-model and mentor.


Assuntos
Esgotamento Profissional , Intenção , Humanos , Inquéritos e Questionários , Estudos Transversais , Reorganização de Recursos Humanos
2.
Elife ; 122023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37869988

RESUMO

The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Orphanet J Rare Dis ; 17(1): 372, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209187

RESUMO

BACKGROUND: Phase I of the Korean Undiagnosed Diseases Program (KUDP), performed for 3 years, has been completed. The Phase I program aimed to solve the problem of undiagnosed patients throughout the country and develop infrastructure, including a data management system and functional core laboratory, for long-term translational research. Herein, we share the clinical experiences of the Phase I program and introduce the activities of the functional core laboratory and data management system. RESULTS: During the program (2018-2020), 458 patients were enrolled and classified into 3 groups according to the following criteria: (I) those with a specific clinical assessment which can be verified by direct testing (32 patients); (II) those with a disease group with genetic and phenotypic heterogeneity (353 patients); and (III) those with atypical presentations or diseases unknown to date (73 patients). All patients underwent individualized diagnostic processes based on the decision of an expert consortium. Confirmative diagnoses were obtained for 242 patients (52.8%). The diagnostic yield was different for each group: 81.3% for Group I, 53.3% for Group II, and 38.4% for Group III. Diagnoses were made by next-generation sequencing for 204 patients (84.3%) and other genetic testing for 35 patients (14.5%). Three patients (1.2%) were diagnosed with nongenetic disorders. The KUDP functional core laboratory, with a group of experts, organized a streamlined research pipeline covering various resources, including animal models, stem cells, structural modeling and metabolic and biochemical approaches. Regular data review was performed to screen for candidate genes among undiagnosed patients, and six different genes were identified for functional research. We also developed a web-based database system that supports clinical cohort management and provides a matchmaker exchange protocol based on a matchbox, likely to reinforce the nationwide clinical network and further international collaboration. CONCLUSIONS: The KUDP evaluated the unmet needs of undiagnosed patients and established infrastructure for a data-sharing system and future functional research. The advancement of the KUDP may lead to sustainable bench-to-bedside research in Korea and contribute to ongoing international collaboration.


Assuntos
Doenças não Diagnosticadas , Bases de Dados Factuais , Humanos , Disseminação de Informação , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , República da Coreia/epidemiologia
4.
Nat Biomed Eng ; 6(4): 435-448, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347276

RESUMO

Human spinal-cord-like tissues induced from human pluripotent stem cells are typically insufficiently mature and do not mimic the morphological features of neurulation. Here, we report a three-dimensional culture system and protocol for the production of human spinal-cord-like organoids (hSCOs) recapitulating the neurulation-like tube-forming morphogenesis of the early spinal cord. The hSCOs exhibited neurulation-like tube-forming morphogenesis, cellular differentiation into the major types of spinal-cord neurons as well as glial cells, and mature synaptic functional activities, among other features of the development of the spinal cord. We used the hSCOs to screen for antiepileptic drugs that can cause neural-tube defects. hSCOs may also facilitate the study of the development of the human spinal cord and the modelling of diseases associated with neural-tube defects.


Assuntos
Defeitos do Tubo Neural , Neurulação , Humanos , Morfogênese/fisiologia , Neurulação/fisiologia , Organoides , Medula Espinal
5.
Sci Rep ; 12(1): 2082, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136073

RESUMO

Oxidative stress triggers axon degeneration and cell death, leading to the development of neurodegenerative diseases. Spinal motor nerves project very long axons, increasing the burden on axonal transport and metabolism. As such, spinal motor nerves are expected to be susceptible to oxidative stress, but model systems for visualizing and investigating acutely degenerating motor axons are limited. In this study, we establish motor nerve organoids from human pluripotent stem cells (hPSCs) with properties similar to those of neuromesodermal progenitors (NMPs), a population of progenitor cells that comprise the caudal spinal cord. Three-dimensional differentiation of organoids efficiently gave rise to mature motor neurons within 18 days. Adherent organoids showed robust axon fascicles and active growth cones under normal conditions. In addition, more homogenous and efficient generation of motor neurons were achieved when organoids were dissociated into individual cells. Hydrogen peroxide-induced oxidative stress resulted in a broad range of signs of axon degeneration including the disappearance of growth cones and neurites, axon retraction, axon fragmentation and bleb formation, and apoptotic cell death, whose severity can be reliably quantifiable in our culture system. Remarkably, cytoskeletal drugs modulating actin or microtubule turnover differentially facilitated axon dynamics and increased axon regenerative potential. Taken together, our motor nerve organoid model could be potentially useful for drug screens evaluating the rearrangement of cytoskeletons in regenerating motor axons.


Assuntos
Axônios/fisiologia , Citoesqueleto/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Regeneração Nervosa , Humanos , Células-Tronco Pluripotentes Induzidas , Organoides
7.
Nat Neurosci ; 24(12): 1673-1685, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782793

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disorder in which motor neurons degenerate, the causes of which remain unclear. In particular, the basis for selective vulnerability of spinal motor neurons (sMNs) and resistance of ocular motor neurons to degeneration in ALS has yet to be elucidated. Here, we applied comparative multi-omics analysis of human induced pluripotent stem cell-derived sMNs and ocular motor neurons to identify shared metabolic perturbations in inherited and sporadic ALS sMNs, revealing dysregulation in lipid metabolism and its related genes. Targeted metabolomics studies confirmed such findings in sMNs of 17 ALS (SOD1, C9ORF72, TDP43 (TARDBP) and sporadic) human induced pluripotent stem cell lines, identifying elevated levels of arachidonic acid. Pharmacological reduction of arachidonic acid levels was sufficient to reverse ALS-related phenotypes in both human sMNs and in vivo in Drosophila and SOD1G93A mouse models. Collectively, these findings pinpoint a catalytic step of lipid metabolism as a potential therapeutic target for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
8.
BMC Med Educ ; 21(1): 506, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563180

RESUMO

BACKGROUND: High-fidelity simulators are highly useful in assessing clinical competency; they enable reliable and valid evaluation. Recently, the importance of peer assessment has been highlighted in healthcare education, and studies using peer assessment in healthcare, such as medicine, nursing, dentistry, and pharmacy, have examined the value of peer assessment. This study aimed to analyze inter-rater reliability between peers and instructors and examine differences in scores between peers and instructors in the assessment of high-fidelity-simulation-based clinical performance by medical students. METHODS: This study analyzed the results of two clinical performance assessments of 34 groups of fifth-year students at Ajou University School of Medicine in 2020. This study utilized a modified Queen's Simulation Assessment Tool to measure four categories: primary assessment, diagnostic actions, therapeutic actions, and communication. In order to estimate inter-rater reliability, this study calculated the intraclass correlation coefficient and used the Bland and Altman method to analyze agreement between raters. A t-test was conducted to analyze the differences in evaluation scores between colleagues and faculty members. Group differences in assessment scores between peers and instructors were analyzed using the independent t-test. RESULTS: Overall inter-rater reliability of clinical performance assessments was high. In addition, there were no significant differences in overall assessment scores between peers and instructors in the areas of primary assessment, diagnostic actions, therapeutic actions, and communication. CONCLUSIONS: The results indicated that peer assessment can be used as a reliable assessment method compared to instructor assessment when evaluating clinical competency using high-fidelity simulators. Efforts should be made to enable medical students to actively participate in the evaluation process as fellow assessors in high-fidelity-simulation-based assessment of clinical performance in situations similar to real clinical settings.


Assuntos
Treinamento com Simulação de Alta Fidelidade , Estudantes de Medicina , Competência Clínica , Avaliação Educacional , Humanos , Grupo Associado , Reprodutibilidade dos Testes
9.
Front Immunol ; 12: 813240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087532

RESUMO

A novel coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged and caused an outbreak of unusual viral pneumonia. Several reports have shown that cross-reactive antibodies against SARS-CoV-2 also exist in people unexposed to this virus. However, the neutralizing activity of cross-reactive antibodies is controversial. Here, we subjected plasma samples from SARS-CoV-2-unexposed elderly Korean people (n = 119) to bead-based IgG antibody analysis. SARS-CoV-2 S1 subunit-reactive IgG antibody analysis detected positive signals in some samples (59 of 119, 49.6%). SARS-CoV-2 receptor-binding domain (RBD)-reactive antibody levels were most significantly correlated with human coronavirus-HKU1 S1 subunit-reactive antibody levels. To check the neutralizing activity of plasma samples, the SARS-CoV-2 spike pseudotype neutralizing assay was used. However, the levels of cross-reactive antibodies did not correlate with neutralizing activity. Instead, SARS-CoV-2 pseudovirus infection was neutralized by some RBD-reactive plasma samples (n = 9, neutralization ≥ 25%, P ≤ 0.05), but enhanced by other RBD-reactive plasma samples (n = 4, neutralization ≤ -25%, P ≤ 0.05). Interestingly, the blood plasma groups with enhancing and neutralizing effects had high levels of SARS-CoV-2 RBD-reactive antibodies than the plasma group that had no effect. These results suggest that some SARS-CoV-2 RBD-reactive antibodies from pre-pandemic elderly people exert two opposing functions during SARS-CoV-2 pseudovirus infection. In conclusion, preformed RBD-reactive antibodies may have two opposing functions, namely, protecting against and enhancing viral infection. Analysis of the epitopes of preformed antibodies will be useful to elucidate the underlying mechanism.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Coronavirus/imunologia , Imunoglobulina G/imunologia , Idoso , COVID-19/imunologia , Coronavirus/fisiologia , Infecções por Coronavirus/sangue , Reações Cruzadas , Células HEK293 , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Glia ; 68(1): 178-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441125

RESUMO

Severe intraventricular hemorrhage (IVH) in premature infants triggers reactive gliosis, causing acute neuronal death and glial scar formation. Transplantation of mesenchymal stem cells (MSCs) has often showed improved CNS recovery in an IVH model, but whether this response is related to reactive glial cells is still unclear. Herein, we suggest that MSCs impede the response of reactive microglia rather than astrocytes, thereby blocking neuronal damage. Astrocytes alone showed mild reactiveness under hemorrhagic conditions mimicked by thrombin treatment, and this was not blocked by MSC-conditioned medium (MSC-CM) in vitro. In contrast, thrombin-induced microglial activation and release of proinflammatory cytokines were inhibited by MSC-CM. Interestingly, astrocytes showed greater reactive response when co-cultured with microglia, and this was abolished in the presence of MSC-CM. Gene expression profiles in microglia revealed that transcript levels of genes for immune response and proinflammatory cytokines were altered by thrombin treatment. This result coincided with the robust phosphorylation of STAT1 and p38 MAPK, which might be responsible for the production and release of proinflammatory cytokines. Furthermore, application of MSC-CM diminished thrombin-mediated phosphorylation of STAT1 and p38 MAPK, supporting the acute anti-inflammatory role of MSCs under hemorrhagic conditions. In line with this, activation of microglia and consequent cytokine release were impaired in Stat1-null mice. However, reactive response in Stat1-deficient astrocytes was maintained. Taken together, our results demonstrate that MSCs mainly block the activation of microglia involving STAT1-mediated cytokine release and subsequent reduction of reactive astrocytes.


Assuntos
Astrócitos/metabolismo , Hemorragia Cerebral Intraventricular/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Células Cultivadas , Hemorragia Cerebral Intraventricular/terapia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Ratos , Ratos Sprague-Dawley
11.
J Neuroinflammation ; 16(1): 170, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429777

RESUMO

BACKGROUND: Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). METHODS: To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. RESULTS: AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. CONCLUSION: This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage.


Assuntos
Lesões Encefálicas/metabolismo , Ataque Isquêmico Transitório/metabolismo , Microglia/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Lesões Encefálicas/patologia , Ataque Isquêmico Transitório/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/patologia
12.
Biochem Biophys Res Commun ; 514(3): 645-652, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31076103

RESUMO

Cyclin-dependent kinase 5 (Cdk5) controls neuronal migration in the developing cortex when multipolar newborn neurons transform to become bipolar. However, by which mechanisms Cdk5 controls cell adhesion in migrating neurons are not fully understood. In this study, we examined the functional interaction between Cdk5 and N-cadherin (Ncad) in newborn neurons when they undergo the multipolar to bipolar transition in the intermediate zone (IZ). Detailed expression analysis revealed that both Cdk5 and Ncad were present in GFP-electroporated migrating neurons in the IZ. Misexpression of dominant negative Cdk5 into the embryonic brains stalled neuronal locomotion in the lower IZ in which arrested cells were round or multipolar. When Ncad was co-introduced with Cdk5DN, however, cells continue to migrate into the cortical plate (CP) and migrating neurons acquired typical bipolar morphology with a pia-directed leading process. Similarly, downregulation of CDK5 resulted in lesser aggregation ability, reversed by the expression of Ncad in vitro. Down-regulation of activity or protein level of CDK5 did not alter the total amount of NCAD proteins but lowered its surface expression in cells. Lastly, expression of CDK5 and NCAD overlapped in the IZ of the human fetal cortex, indicating that the role of Cdk5 and Ncad in neuronal migration is evolutionarily conserved.


Assuntos
Caderinas/metabolismo , Movimento Celular , Córtex Cerebral/embriologia , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios/citologia , Animais , Membrana Celular/metabolismo , Feto/embriologia , Células HEK293 , Humanos , Camundongos Endogâmicos ICR
13.
J Neuroinflammation ; 15(1): 284, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305119

RESUMO

BACKGROUND: The pathogenic roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling in cerebral ischemia have been evidenced mainly through the efficacy of FTY720 that binds non-selectively to four of the five S1P receptors (S1P1,3,4,5). Recently, S1P1 and S1P2 were identified as specific receptor subtypes that contribute to brain injury in cerebral ischemia; however, the possible involvement of other S1P receptors remains unknown. S1P3 can be the candidate because of its upregulation in the ischemic brain, which was addressed in this study, along with underlying pathogenic mechanisms. METHODS: We used transient middle cerebral artery occlusion/reperfusion (tMCAO), a mouse model of transient focal cerebral ischemia. To identify S1P3 as a pathogenic factor in cerebral ischemia, we employed a specific S1P3 antagonist, CAY10444. Brain damages were assessed by brain infarction, neurological score, and neurodegeneration. Histological assessment was carried out to determine microglial activation, morphological transformation, and proliferation. M1/M2 polarization and relevant signaling pathways were determined by biochemical and immunohistochemical analysis. RESULTS: Inhibiting S1P3 immediately after reperfusion with CAY10444 significantly reduced tMCAO-induced brain infarction, neurological deficit, and neurodegeneration. When S1P3 activity was inhibited, the number of activated microglia was markedly decreased in both the periischemic and ischemic core regions in the ischemic brain 1 and 3 days following tMCAO. Moreover, inhibiting S1P3 significantly restored the microglial shape from amoeboid to ramified microglia in the ischemic core region 3 days after tMCAO, and it attenuated microglial proliferation in the ischemic brain. In addition to these changes, S1P3 signaling influenced the proinflammatory M1 polarization, but not M2. The S1P3-dependent regulation of M1 polarization was clearly shown in activated microglia, which was affirmed by determining the in vivo activation of microglial NF-κB signaling that is responsible for M1 and in vitro expression levels of proinflammatory cytokines in activated microglia. As downstream effector pathways in an ischemic brain, S1P3 influenced phosphorylation of ERK1/2, p38 MAPK, and Akt. CONCLUSIONS: This study identified S1P3 as a pathogenic mediator in an ischemic brain along with underlying mechanisms, involving its modulation of microglial activation and M1 polarization, further suggesting that S1P3 can be a therapeutic target for cerebral ischemia.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Polaridade Celular/fisiologia , Infarto da Artéria Cerebral Média/complicações , Microglia/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptores de Esfingosina-1-Fosfato , Tiazolidinas/uso terapêutico
14.
Sci Rep ; 8(1): 8531, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867183

RESUMO

Tissue clearing enables us to observe thick tissue at a single cell resolution by reducing light scattering and refractive index matching. However, imaging of a large volume of tissue for 3D reconstruction requires a great deal of time, cost, and efforts. Few methods have been developed to transcend these limitations by mechanical compression or isotropic tissue shrinkage. Tissue shrinkage significantly lessens the imaging burden; however, there is an inevitable trade-off with image resolution. Here, we have developed the "BrainFilm" technique to compress cleared tissue at Z-axis by dehydration, without alteration of the XY-axis. The Z-axis compression was approximately 90%, and resulted in substantial reduction in image acquisition time and data size. The BrainFilm technique was successfully used to trace and characterize the morphology of thick biocytin-labelled neurons following electrophysiological recording and trace the GFP-labelled long nerve projections in irregular tissues such as the limb of mouse embryo. Thus, BrainFilm is a versatile tool that can be applied in diverse studies of 3D tissues in which spatial information of the Z-axis is dispensable.


Assuntos
Encéfalo/citologia , Embrião de Mamíferos/citologia , Microdissecção/métodos , Neurônios/citologia , Coloração e Rotulagem/métodos , Animais , Encéfalo/embriologia , Embrião de Mamíferos/embriologia , Camundongos , Ratos , Ratos Sprague-Dawley
15.
J Neurosci ; 38(14): 3571-3583, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29530986

RESUMO

Mutations in the cereblon (CRBN) gene cause human intellectual disability, one of the most common cognitive disorders. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. We investigated the role of CRBN in synaptic function and animal behavior using male mouse and Drosophila models. Crbn knock-out (KO) mice showed normal brain and spine morphology as well as intact synaptic plasticity; however, they also exhibited decreases in synaptic transmission and presynaptic release probability exclusively in excitatory synapses. Presynaptic function was impaired not only by loss of CRBN expression, but also by expression of pathogenic CRBN mutants (human R419X mutant and Drosophila G552X mutant). We found that the BK channel blockers paxilline and iberiotoxin reversed this decrease in presynaptic release probability in Crbn KO mice. In addition, paxilline treatment also restored normal cognitive behavior in Crbn KO mice. These results strongly suggest that increased BK channel activity is the pathological mechanism of intellectual disability in CRBN mutations.SIGNIFICANCE STATEMENTCereblon (CRBN), a well known target of the immunomodulatory drug thalidomide, was originally identified as a gene that causes human intellectual disability when mutated. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. Based on the idea that synaptic abnormalities are the most common factor in cognitive dysfunction, we monitored the synaptic structure and function of Crbn knock-out (KO) animals to identify the molecular mechanisms of intellectual disability. Here, we found that Crbn KO animals showed cognitive deficits caused by enhanced BK channel activity and reduced presynaptic glutamate release. Our findings suggest a physiological pathomechanism of the intellectual disability-related gene CRBN and will contribute to the development of therapeutic strategies for CRBN-related intellectual disability.


Assuntos
Cognição , Deficiência Intelectual/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Drosophila , Ácido Glutâmico/metabolismo , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
16.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139974

RESUMO

The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fator de Transcrição PAX6/metabolismo , Retina/fisiologia , Fatores de Transcrição/metabolismo , Adaptação Ocular , Animais , Camundongos , Camundongos Knockout
17.
Sci Rep ; 6: 36491, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819291

RESUMO

LIM-homeodomain (HD) transcription factors form a multimeric complex and assign neuronal subtype identities, as demonstrated by the hexameric ISL1-LHX3 complex which gives rise to somatic motor (SM) neurons. However, the roles of combinatorial LIM code in motor neuron diversification and their subsequent differentiation is much less well understood. In the present study, we demonstrate that the ISL1 controls postmitotic cranial branchiomotor (BM) neurons including the positioning of the cell bodies and peripheral axon pathfinding. Unlike SM neurons, which transform into interneurons, BM neurons are normal in number and in marker expression in Isl1 mutant mice. Nevertheless, the movement of trigeminal and facial BM somata is stalled, and their peripheral axons are fewer or misrouted, with ectopic branches. Among genes whose expression level changes in previous ChIP-seq and microarray analyses in Isl1-deficient cell lines, we found that Slit2 transcript was almost absent from BM neurons of Isl1 mutants. Both ISL1-LHX3 and ISL1-LHX4 bound to the Slit2 enhancer and drove endogenous Slit2 expression in SM and BM neurons. Our findings suggest that combinations of ISL1 and LHX factors establish cell-type specificity and functional diversity in terms of motor neuron identities and/or axon development.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas com Homeodomínio LIM/genética , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Axônios/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/genética , Núcleo Motor do Nervo Trigêmeo/fisiologia
18.
Neural Dev ; 11(1): 18, 2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770832

RESUMO

BACKGROUND: Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. METHODS: We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. RESULTS: We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. CONCLUSION: Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.


Assuntos
Orientação de Axônios , Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Nervo Oculomotor/crescimento & desenvolvimento , Receptores Imunológicos/fisiologia , Animais , Proteínas de Membrana/fisiologia , Mesencéfalo/fisiologia , Camundongos , Fatores de Crescimento Neural/fisiologia , Netrina-1 , Receptores CXCR4/fisiologia , Receptores de Superfície Celular , Transdução de Sinais , Proteínas Supressoras de Tumor/fisiologia , Proteínas Roundabout
19.
Biochem Biophys Res Commun ; 479(4): 820-826, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27680314

RESUMO

Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.


Assuntos
Luz , Neurogênese/fisiologia , Neurogênese/efeitos da radiação , Receptor Notch1/metabolismo , Receptor Notch1/efeitos da radiação , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos da radiação , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/efeitos da radiação , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Domínios Proteicos , Receptor Notch1/química , Transdução de Sinais
20.
J Neurosci ; 36(39): 10181-97, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683913

RESUMO

UNLABELLED: During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporation in utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics. SIGNIFICANCE STATEMENT: Neuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.


Assuntos
Orientação de Axônios/fisiologia , Movimento Celular/fisiologia , Morfogênese/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Tamanho Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA