Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(40): 27957-27963, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736566

RESUMO

The luminescence characteristics of small molecule excited B40 have not been studied yet, and it may have a potential application value in quantum dot luminescence. Herein, the adsorption and fluorescence emission spectra of small molecules (pyridine, pyrazine and benzene) adsorbed on B40 are studied using first-principles. The results show that the absorption of pyridine and pyrazine on B40 can form stable chemisorption structures pyridine-B40 and pyrazine-B40, while benzene adsorption can form physisorption structure benzene-B40. Moreover, the adsorbed pyridine can enhance the intensity of emission spectra of B40. And the pyrazine adsorbed can obviously enhance the intensity of absorption and emission spectra of B40 and cause the spectra to redshift to the visible light range. And the adsorption of benzene has almost no enhancement effect on absorption and emission spectra of B40. In addition, the influence of different computational basis sets on spectra characteristics has also been discussed and the results show that the main peaks of absorption and emission spectra calculated by the diffuse function augmented basis sets are redshifted relatively. This finding provides a strategy for quantum dot luminescence and a theoretical reference for experimental research.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 260-270, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29626817

RESUMO

We adopted an ingenious method that cut out the DA alternating oligomers from the corresponding DA alternating copolymers. From analyzing the orbital compositions of the HOMOs and LUMOs as well as the reorganization energies, we found the level of charge transfer is increased with the increasing of D/A ratio, but ionization potentials and electron affinities show a contrary trend. Moreover, with the greater ratio, the trend in the nearness of two transitions results in broadening the absorption band in the visible range. That is why experimentally improving the ratio is beneficial for the copolymers used as the p-type materials in the BHJ solar cells. This method is impossible to take the real copolymer system, however, it could provide a strategy to avoid the limitation of the theory level and perform reliable result to study the intrinsic properties of DA alternating copolymers, which can provide a guidance to experimental works.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 134: 406-12, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25025313

RESUMO

A series of heteroleptic cyclometalated Ir (III) complexes for OLEDs application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, and the lowest-lying singlet absorptions and triplet emissions of (piq)2Ir(acac) (labeled 1) and theoretically designed models (piq)2Ir(dpis) (labeled 2), (4Fpiq)2Ir(dpis) (labeled 3), (4F5M-piq)2Ir(dpis) (labeled 4), (4,5-2F-piq)2Ir(dpis) (labeled 5) and (5-F-piq)2Ir(dpis) (labeled 6) were investigated with density functional theory (DFT)-based approaches, where, piq=1-phenylisoquinolato, acac=acetylacetonate and dpis=diphenylimidodisilicate. Their structures in the ground and excited states have been optimized at the DFT/B3LYP/LANL2DZ and TDDFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. Furthermore, the energy-transfer mechanism of these complexes also be analyzed here, and the result shown that the complexes 1-6 are having the low efficiency roll-off property. Except that, the oscillator strength analyze shown that the complexes 2-6, which were designed by theory, are suitable for OLED since their high oscillator strength property.


Assuntos
Complexos de Coordenação/química , Irídio/química , Elétrons , Modelos Moleculares , Teoria Quântica
4.
J Phys Chem A ; 114(26): 7173-8, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20536214

RESUMO

Electronic states of the CH(3)Se and its cation CH(3)Se(+) have been studied using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with the ANO-RCC(TZP) basis set. To investigate the Jahn-Teller effect on the CH(3)Se radical, C(s) symmetry was used for CH(3)Se in calculations. The results show that the Jahn-Teller effect is very small (69 cm(-1)) and the 1(2)A' state is slightly more stable than the 1(2)A'' state (8 cm(-1)). The CH(3)Se has been found to have a 1(2)A' ground state with a C-Se bond distance of 1.975 A. The computed C-Se stretching nu(6)(a') frequency is 554.1 cm(-1), which is in good agreement with the experimental values of 600 +/- 60 cm(-1). The calculations for CH(3)Se at 3.621 and 5.307 eV are attributed to 1(2)A' --> 2(2)A'(1(2)A(1)) and 1(2)A' --> 2(2)A'', respectively. The vertical and adiabatic ionization energies were obtained to compare with the PES data.


Assuntos
Elétrons , Compostos Organosselênicos/química , Teoria Quântica , Cátions/química , Oxigênio/química , Enxofre/química , Termodinâmica , Vibração
5.
J Phys Chem A ; 114(15): 5035-40, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20337482

RESUMO

The AlCCH radical is a photolysis product of the aluminum-acetylene adducts and has been considered as a molecule with potential interest in astrophysics. In this study, the low-lying electronic states of the AlCCH radical, cation, and anion have been studied by using complete active space self-consistent field and multiconfigurational second-order perturbation theory. The geometrical parameters, electron configurations, excitation energies, oscillator strengths, and harmonic vibrational frequencies are calculated in C(S) symmetry. For the X(1)Sigma(+) state of AlCCH, the calculated C-C and C-Al stretching modes are in good agreement with experimental reports. Moreover, the vertical excitation energy (T(v)) of 1(1)Pi is 3.68 eV, which is close to the experimental value of 3.57 eV. The electron transitions of AlCCH(+), X(2)Sigma(+) --> 1(2)Pi, X(2)Sigma(+) --> 2(2)Sigma(+), and X(2)Sigma(+) --> 1(2)Sigma(-), are predicted at 2.57, 4.51, and 4.61 eV, respectively. For AlCCH(-), the transition X(2)Pi --> 1(2)Sigma(-) occurs at 3.02 eV. The ionization potentials of AlCCH are computed in order to provide a theoretical guidance to the photoelectron spectrum of the AlCCH radical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA