Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2339949, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572657

RESUMO

Understanding the mammalian pathogenesis and interspecies transmission of HPAI H5N8 virus hinges on mapping its adaptive markers. We used deep sequencing to track these markers over five passages in murine lung tissue. Subsequently, we evaluated the growth, selection, and RNA load of eight recombinant viruses with mammalian adaptive markers. By leveraging an integrated non-linear regression model, we quantitatively determined the influence of these markers on growth, adaptation, and RNA expression in mammalian hosts. Furthermore, our findings revealed that the interplay of these markers can lead to synergistic, additive, or antagonistic effects when combined. The elucidation distance method then transformed these results into distinct values, facilitating the derivation of a risk score for each marker. In vivo tests affirmed the accuracy of scores. As more mutations were incorporated, the overall risk score of virus heightened, and the optimal interplay between markers became essential for risk augmentation. Our study provides a robust model to assess risk from adaptive markers of HPAI H5N8, guiding strategies against future influenza threats.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Animais , Humanos , Camundongos , Vírus da Influenza A Subtipo H5N8/genética , Pulmão , RNA , Mamíferos
2.
Emerg Microbes Infect ; 13(1): 2332652, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517705

RESUMO

A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Aviária , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Aminoácidos/genética , Interações entre Hospedeiro e Microrganismos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Furões , Vírus da Influenza A/metabolismo , Aves , Nucleotidiltransferases , Replicação Viral/genética , Filogenia
3.
Adv Healthc Mater ; 13(14): e2302803, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329411

RESUMO

The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Camundongos , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Células HEK293 , Anticorpos Antivirais/imunologia
4.
Emerg Microbes Infect ; 13(1): 2302854, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189114

RESUMO

During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Hemaglutininas , Virulência , Furões , Galinhas
5.
Pharmaceutics ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004519

RESUMO

Obesity, as a major cause of many chronic diseases such as diabetes, cardiovascular disease, and cancer, is among the most serious health problems. Increased monoamine oxidase (MAO) activity has been observed in the adipose tissue of obese humans and animals. Although previous studies have already demonstrated the potential of MAO-B inhibitors as a treatment for this condition, the mechanism of their effect has been insufficiently elucidated. In this study, we investigated the anti-obesity effect of selegiline, a selective MAO-B inhibitor, using in vivo animal models. The effect was evaluated through an assessment of body energy homeostasis, glucose tolerance tests, and biochemical analysis. Pharmacological inhibition of MAO-B by selegiline was observed to reduce body weight and fat accumulation, and improved glucose metabolism without a corresponding change in food intake, in HFD-fed obese mice. We also observed that both the expression of adipogenenic markers, including C/EBPα and FABP4, and lipogenic markers such as pACC were significantly reduced in epididymal white adipose tissues (eWATs). Conversely, increased expression of lipolytic markers such as ATGL and pHSL and AMPK phosphorylation were noted. Treating obese mice with selegiline significantly increased expression levels of UCP1 and promoted eWAT browning, indicating increased energy expenditure. These results suggest that selegiline, by inhibiting MAO-B activity, is a potential anti-obesity treatment.

6.
Cell Rep ; 42(9): 113077, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676771

RESUMO

With the emergence of multiple predominant SARS-CoV-2 variants, it becomes important to have a comprehensive assessment of their viral fitness and transmissibility. Here, we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmissibility. Specifically, SARS-CoV-2 variants containing the NSP12 mutations P323L or P323L/G671S exhibit enhanced RNA-dependent RNA polymerase (RdRp) activity at 33°C compared with 37°C and high transmissibility. Molecular dynamics simulations and microscale thermophoresis demonstrate that the NSP12 P323L and P323L/G671S mutations stabilize the NSP12-NSP7-NSP8 complex through hydrophobic effects, leading to increased viral RdRp activity. Furthermore, competitive transmissibility assay reveals that reverse genetic (RG)-P323L or RG-P323L/G671S NSP12 outcompetes RG-WT (wild-type) NSP12 for replication in the upper respiratory tract, allowing markedly rapid transmissibility. This suggests that NSP12 P323L or P323L/G671S mutation of SARS-CoV-2 is associated with increased RdRp complex stability and enzymatic activity, promoting efficient transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Furões , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Mutação/genética , Replicação Viral/genética
7.
PLoS One ; 18(9): e0291537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708114

RESUMO

In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.


Assuntos
COVID-19 , Camellia sinensis , Animais , Camundongos , Animais de Laboratório , SARS-CoV-2 , Camundongos Transgênicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
Antiviral Res ; 216: 105669, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437781

RESUMO

Even though the World Health Organization announced the end of the COVID-19 pandemic as a global public health emergency on May 5, 2023, SARS-CoV-2 continues to pose a significant health threat worldwide, resulting in substantial numbers of infections and fatalities. This study investigated the antiviral potential of Z-FA-FMK (FMK), a novel host cathepsin L protease inhibitor, against SARS-CoV-2 infection using both in vitro and in vivo models. In vitro assessments of FMK against a diverse set of SARS-CoV-2 strains, including the Wuhan-like strain and nine variants, demonstrated potent inhibition with EC50 values ranging from 0.55 to 2.41 µM, showcasing similar or superior efficacy compared to FDA-approved antivirals nirmatrelvir (NTV) and molnupiravir (MPV). In vivo experiments using orally administered FMK (25 mg/kg) in SARS-CoV-2-infected K18 hACE2 transgenic mice revealed improved survival rates of 60% and accelerated recovery compared to NTV and MPV treatments. Additionally, FMK displayed a longer half-life (17.26 ± 8.89 h) than NTV and MPV in the mouse model. Due to its host-targeting mechanism, FMK offers potential advantages such as reduced drug resistance and broad-spectrum antiviral activity against multiple coronaviruses. These findings indicate that FMK may serve as a promising candidate for further clinical evaluation in the fight against SARS-CoV-2.


Assuntos
Anti-Infecciosos , COVID-19 , Animais , Camundongos , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2 , Catepsina L , Pandemias , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos
9.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298530

RESUMO

The ongoing COVID-19 pandemic highlights the urgent need for effective antiviral agents and vaccines. Drug repositioning, which involves modifying existing drugs, offers a promising approach for expediting the development of novel therapeutics. In this study, we developed a new drug, MDB-MDB-601a-NM, by modifying the existing drug nafamostat (NM) with the incorporation of glycyrrhizic acid (GA). We assessed the pharmacokinetic profiles of MDB-601a-NM and nafamostat in Sprague-Dawley rats, revealing rapid clearance of nafamostat and sustained drug concentration of MDB-601a-NM after subcutaneous administration. Single-dose toxicity studies showed potential toxicity and persistent swelling at the injection site with high-dose administration of MDB-601a-NM. Furthermore, we evaluated the efficacy of MDB-601a-NM in protecting against SARS-CoV-2 infection using the K18 hACE-2 transgenic mouse model. Mice treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM exhibited improved protectivity in terms of weight loss and survival rates compared to the nafamostat-treated group. Histopathological analysis revealed dose-dependent improvements in histopathological changes and enhanced inhibitory efficacy in MDB-601a-NM-treated groups. Notably, no viral replication was detected in the brain tissue when mice were treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM. Our developed MDB-601a-NM, a modified Nafamostat with glycyrrhizic acid, shows improved protectivity against SARS-CoV-2 infection. Its sustained drug concentration after subcutaneous administration and dose-dependent improvements makes it a promising therapeutic option.


Assuntos
COVID-19 , SARS-CoV-2 , Ratos , Humanos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Pandemias , Modelos Animais de Doenças , Ratos Sprague-Dawley
10.
Microbiol Spectr ; : e0338522, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877070

RESUMO

The appearance of SARS-CoV-2 variants in late 2020 raised alarming global public health concerns. Despite continued scientific progress, the genetic profiles of these variants bring changes in viral properties that threaten vaccine efficacy. Thus, it is critically important to investigate the biologic profiles and significance of these evolving variants. In this study, we demonstrate the application of circular polymerase extension cloning (CPEC) to the generation of full-length clones of SARS-CoV-2. We report that, combined with a specific primer design scheme, this yields a simpler, uncomplicated, and versatile approach for engineering SARS-CoV-2 variants with high viral recovery efficiency. This new strategy for genomic engineering of SARS-CoV-2 variants was implemented and evaluated for its efficiency in generating point mutations (K417N, L452R, E484K, N501Y, D614G, P681H, P681R, Δ69-70, Δ157-158, E484K+N501Y, and Ins-38F) and multiple mutations (N501Y/D614G and E484K/N501Y/D614G), as well as a large truncation (ΔORF7A) and insertion (GFP). The application of CPEC to mutagenesis also allows the inclusion of a confirmatory step prior to assembly and transfection. This method could be of value in the molecular characterization of emerging SARS-CoV-2 variants as well as the development and testing of vaccines, therapeutic antibodies, and antivirals. IMPORTANCE Since the first emergence of the SARS-CoV-2 variant in late 2020, novel variants have been continuously introduced to the human population, causing severe public health threats. In general, because these variants acquire new genetic mutation/s, it is critical to analyze the biological function of viruses that such mutations can confer. Therefore, we devised a method that can construct SARS-CoV-2 infectious clones and their variants rapidly and efficiently. The method was developed based on a PCR-based circular polymerase extension cloning (CPEC) combined with a specific primer design scheme. The efficiency of the newly designed method was evaluated by generating SARS-CoV-2 variants with single point mutations, multiple point mutations, and a large truncation and insertion. This method could be of value for the molecular characterization of emerging SARS-CoV-2 variants and the development and testing of vaccines and antiviral agents.

11.
Microorganisms ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677475

RESUMO

Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.

12.
Proc Natl Acad Sci U S A ; 120(4): e2208425120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669119

RESUMO

Recurrent spillovers of α- and ß-coronaviruses (CoV) such as severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome-CoV, SARS-CoV-2, and possibly human CoV have caused serious morbidity and mortality worldwide. In this study, six receptor-binding domains (RBDs) derived from α- and ß-CoV that are considered to have originated from animals and cross-infected humans were linked to a heterotrimeric scaffold, proliferating cell nuclear antigen (PCNA) subunits, PCNA1, PCNA2, and PCNA3. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens, like jewels in a crown. Prime-boost immunizations with 6RBD-np in mice induced significantly high Ab titers against RBD antigens derived from α- and ß-CoV and increased interferon (IFN-γ) production, with full protection against the SARS-CoV-2 wild type and Delta challenges. The mosaic 6RBD-np has the potential to induce intergenus cross-reactivity and to be developed as a pan-CoV vaccine against future CoV spillovers.


Assuntos
COVID-19 , Nanopartículas , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
13.
Microbiol Spectr ; 11(1): e0316722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651758

RESUMO

Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems. IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems.


Assuntos
Infecções por Enterovirus , Enterovirus , Vacinas , Humanos , DNA Complementar/genética , Genética Reversa , Enterovirus/genética , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/epidemiologia , Antígenos Virais/genética , Clonagem Molecular
14.
bioRxiv ; 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36203545

RESUMO

With the convergent global emergence of SARS-CoV-2 variants of concern (VOC), a precise comparison study of viral fitness and transmission characteristics is necessary for the prediction of dominant VOCs and the development of suitable countermeasures. While airway temperature plays important roles in the fitness and transmissibility of respiratory tract viruses, it has not been well studied with SARS-CoV-2. Here we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmission. Specifically, SARS-COV-2 variants containing the P323L or P323L/G671S mutation in the NSP12 RNA-dependent RNA polymerase (RdRp) exhibited enhanced RdRp enzymatic activity at 33°C compared to 37°C and high transmissibility in ferrets. MicroScale Thermophoresis demonstrated that the NSP12 P323L or P323L/G671S mutation stabilized the NSP12-NSP7-NSP8 complex interaction. Furthermore, reverse genetics-derived SARS-CoV-2 variants containing the NSP12 P323L or P323L/G671S mutation displayed enhanced replication at 33°C, and high transmission in ferrets. This suggests that the evolutionarily forced NSP12 P323L and P323L/G671S mutations of recent SARS-CoV-2 VOC strains are associated with increases of the RdRp complex stability and enzymatic activity, promoting the high transmissibility.

15.
Antiviral Res ; 208: 105430, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209984

RESUMO

As the SARS-CoV-2 pandemic remains uncontrolled owing to the continuous emergence of variants of concern, there is an immediate need to implement the most effective antiviral treatment strategies, especially for risk groups. Here, we evaluated the therapeutic potency of nirmatrelvir, remdesivir and molnupiravir, and their combinations in SARS-CoV-2 infected K18-hACE2 transgenic mice. Systemic treatment of mice with each drug (20 mg/kg) resulted in slightly enhanced antiviral efficacy and yielded an increased life expectancy of only about 20-40% survival. However, combination therapy with nirmatrelvir (20 mg/kg) and molnupiravir (20 mg/kg) in lethally infected mice showed profound inhibition of SARS-CoV-2 replication in both the lung and brain and synergistically improved survival rates up to 80% compared to those with nirmatrelvir (36%, P < 0.001) and molnupiravir (43%, P < 0.001) administered alone. This combination therapy effectively reduced clinical severity score, virus-induced tissue damage, and viral distribution compared to those in animals treated with these monotherapies. Furthermore, all these assessments associated with this combination were also significantly higher than that of mice receiving remdesivir monotherapy (P < 0.001) and the nirmatrelvir (20 mg/kg) and remdesivir (20 mg/kg) combination (P < 0.001), underscored the clinical significance of this combination. By contrast, the nirmatrelvir and remdesivir combination showed less antiviral efficacy, with lower survival compared to nirmatrelvir monotherapy due to the insufficient plasma exposure of the remdesivir, demonstrating the inefficient therapeutic effect of this combination in the mouse model. The combination therapy with nirmatrelvir and molnupiravir contributes to alleviated morbidity and mortality, which can serve as a basis for the design of clinical studies of this combination in the treatment of COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Camundongos , Animais , Antivirais/farmacologia , Camundongos Transgênicos
16.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682982

RESUMO

Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.


Assuntos
Vírus da Influenza A , Influenza Aviária , Nanopartículas Metálicas , Animais , Animais Selvagens , Galinhas , Európio , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia
17.
Nat Commun ; 13(1): 21, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013229

RESUMO

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Eliminação de Partículas Virais/imunologia , Fatores Etários , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/genética , COVID-19/transmissão , Chlorocebus aethiops , Feminino , Furões , Perfilação da Expressão Gênica/métodos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Células Vero , Virulência
18.
Mikrochim Acta ; 188(10): 333, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498149

RESUMO

Nucleic acid amplification tests (NAATs) are powerful tools for the Japanese encephalitis virus (JEV). We demonstrated highly sensitive, specific, and rapid detection of JEV by colorimetric reverse-transcription loop-mediated isothermal amplification (cRT-LAMP). Under optimized conditions, the RT-LAMP assay results showed that the limit of detection was approximately equivalent to 1 RNA genome copy/µL with an assay time of 30 min. The assay was highly specific to JEV when tested with other mosquito-borne virus panels (Zika virus and dengue virus types 2-4). The ability to detect JEV directly from crude human sample matrices (serum and urine) demonstrated the suitability of our JEV RT-LAMP for widespread clinical application. The JEV RT-LAMP provides combination of  rapid colorimetric determination of true-positive JEV RT-LAMP amplicons with our recently developed JEV-nanobarcodes, measured at absorbance wavelenght of 530 (A530) and 650 (A650), which have a limit of detection of 23.3 ng/µL. The AuNP:polyA10-JEV RT-LAMP nanobarcodes exhibited superior capability for stabilizing the true-positive JEV RT-LAMP amplicons against salt-induced AuNP aggregation, which improved the evaluation of true/false positive signals in the assay. These advances enable to expand the use of RT-LAMP for point-of-care tests, which will greatly bolster JEV clinical programs. The JEV RT-LAMP nanobarcode assay targeting the envelope (E) gene and MgSO4 induced AuNP aggregation, indicated by an instant pink-to-violet colorimetric read-out.


Assuntos
Colorimetria/métodos , Vírus da Encefalite Japonesa (Espécie)/química , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , Animais , Sequência de Bases , Sangue/virologia , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Nanopartículas Metálicas/química , Poli A/química , RNA Viral/sangue , RNA Viral/urina , Suínos , Urina/virologia
19.
Antiviral Res ; 193: 105126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217753

RESUMO

Baloxavir marboxil (BXM) treatment-emergent polymerase acid (PA) I38X amino acid substitution (AAS) in the resistant variants of influenza viruses raise concerns regarding their emergence and spread. This study investigated the impact of 1 or 5 mg/kg BXM and 25 mg/kg oseltamivir phosphate (OS) (single or combination therapy) on the occurrence of resistance-related substitutions during the sequential lung-to-lung passages of AH1N1)pdm09 virus in mice. Deep sequencing analysis revealed that 67% (n = 4/6) of the population treated with BXM single therapy (1 or 5 mg/kg) possessed the treatment-emergent PA-I38X AAS variants (I38T, I38S, and I38V). Notably, BXM-OS combination therapy impeded PA-I38X AAS emergence. Although the doses utilized in the mouse model may not be directly translated into the clinically equivalent doses of each drugs, these findings offer insights toward alternative therapies to mitigate the emergence of influenza antiviral resistance.


Assuntos
Dibenzotiepinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Morfolinas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Oseltamivir/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Camundongos , Infecções por Orthomyxoviridae/virologia , Carga Viral/efeitos dos fármacos
20.
Res Sq ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33821260

RESUMO

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets were infected with SARS-CoV-2. Although SARS-CoV-2 was isolated from all ferrets regardless of age, aged ferrets (≥ 3 years old) showed higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤ 6 months) and young adult (1-2 years) groups. Transcriptome analysis of aged ferret lungs revealed strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA