Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Pharmacol Toxicol ; 23(1): 19, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354498

RESUMO

BACKGROUND: Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS: We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS: After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS: Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.


Assuntos
Neoplasias Pulmonares , Fibrose Pulmonar , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Guanidinas , Humanos , Pulmão , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibrose Pulmonar/metabolismo , Ratos
2.
Toxics ; 9(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34564354

RESUMO

The inhalation of humidifier disinfectants (HDs) is linked to HD-associated lung injury (HDLI). Polyhexamethylene guanidine (PHMG) is significantly involved in HDLI, but the correlation between chloromethylisothiazolinone (CMIT) and HDLI remains ambiguous. Additionally, the differences in the molecular responses to PHMG and CMIT are poorly understood. In this study, RNA sequencing (RNA-seq) data showed that the expression levels of metallothionein-1 (MT1) isoforms, including MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X, were increased in human pulmonary alveolar epithelial cells (HPAEpiCs) that were treated with PHMG but not in those treated with CMIT. Moreover, upregulation of MT1B, MT1F, MT1G, and MT1H was observed only in PHMG-treated HPAEpiCs. The protein expression level of metal regulatory transcription factor 1 (MTF1), which binds to the promoters of MT1 isoforms, was increased in PHMG-treated HPAEpiCs but not in CMIT-treated HPAEpiCs. However, the expression of early growth response 1 (EGR1) and nuclear receptor superfamily 3, group C, member 1 (NR3C1), other transcriptional regulators involved in MT1 isomers, were increased regardless of treatment with PHMG or CMIT. These results suggest that MTF1 is an essential transcription factor for the induction of MT1B, MT1F, MT1G, and MT1H by PHMG but not by CMIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA