Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405323, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718295

RESUMO

Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.

2.
Acta Pharm Sin B ; 14(3): 1412-1427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486994

RESUMO

Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.

3.
ACS Nano ; 18(8): 6702-6717, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38359389

RESUMO

Tumor cell-derived cancer nanovaccines introduce tumor cell-derived components as functional units that endow the nanovaccine systems with some advantages, especially providing all potential tumor antigens. However, cumbersome assembly steps, potential risks of exogenous adjuvants, as well as insufficient lymph node (LN) targeting and dendritic cell (DC) internalization limit the efficacy and clinical translation of existing tumor cell-derived cancer nanovaccines. Herein, we introduced an endoplasmic reticulum (ER) stress inducer α-mangostin (αM) into tumor cells through poly(d, l-lactide-co-glycolide) nanoparticles and harvested biologically self-assembled tumor cell-derived cancer nanovaccines (αM-Exos) based on the biological process of tumor cell exocytosing nanoparticles through tumor-derived exosomes (TEXs). Besides presenting multiple potential antigens, αM-Exos inherited abundant 70 kDa heat shock proteins (Hsp70s) upregulated by ER stress, which can not only act as endogenous adjuvants but also improve LN targeting and DC internalization. Following subcutaneous injection, αM-Exos efficiently migrated to LNs and was expeditiously endocytosed by DCs, delivering tumor antigens and adjuvants to DCs synchronously, which then powerfully triggered antitumor immune responses and established long-term immune memory. Our study exhibited an all-in-one biologically self-assembled tumor cell-derived cancer nanovaccine platform, and the fully featured cancer nanovaccines assembled efficiently through this platform are promising for desirable cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Nanovacinas , Antígenos de Neoplasias , Imunoterapia , Células Dendríticas
4.
Adv Mater ; 36(15): e2307454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299428

RESUMO

The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.


Assuntos
Glioblastoma , Nanopartículas , Peróxidos , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Hipóxia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
5.
Adv Drug Deliv Rev ; 207: 115196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336090

RESUMO

Intranasal delivery provides a direct and non-invasive method for drugs to reach the central nervous system. Nanoparticles play a crucial role as carriers in augmenting the efficacy of brain delivery. However, the interaction between nanoparticles and the nose-to-brain pathway and how the various biopharmaceutical factors affect brain delivery efficacy remains unclear. In this review, we comprehensively summarized the anatomical and physiological characteristics of the nose-to-brain pathway and the obstacles that hinder brain delivery. We then outlined the interaction between nanoparticles and this pathway and reviewed the biomedical applications of various nanoparticulate drug delivery systems for nose-to-brain drug delivery. This review aims at inspiring innovative approaches for enhancing the effectiveness of nose-to-brain drug delivery in the treatment of different brain disorders.


Assuntos
Encéfalo , Nanopartículas , Humanos , Administração Intranasal , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo , Nanopartículas/metabolismo
6.
Nat Nanotechnol ; 19(3): 376-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158436

RESUMO

Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood-brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs.


Assuntos
Vesículas Extracelulares , Nanopartículas , Microglia , Barreira Hematoencefálica , Encéfalo , Nanopartículas/uso terapêutico
7.
Adv Mater ; 36(14): e2311420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157492

RESUMO

The clinical application of extracellular vesicles (EVs)-based therapeutics continues to be challenging due to their rapid clearance, restricted retention, and low yields. Although hydrogel possesses the ability to impede physiological clearance and increase regional retention, it typically fails to effectively release the incorporated EVs, resulting in reduced accessibility and bioavailability. Here an intelligent hydrogel in which the release of EVs is regulated by the proteins on the EVs membrane is proposed. By utilizing the EVs membrane enzyme to facilitate hydrogel degradation, sustained retention and self-stimulated EVs release can be achieved at the administration site. To achieve this goal, the membrane proteins with matrix degrading activity in the mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are identified using comparative proteomics. After that, a hydrogel comprised of self-assembled peptides that are susceptible to degradation by the membrane enzymes present in MSC-EVs is designed and synthesized. After intranasal administration, this peptide hydrogel facilitates sustained and thermo-sensitive release of MSC-EVs, thereby extending the retention of the MSC-EVs and substantially enhancing their potential for treating Alzheimer's disease. This research presents a comparative proteomics-driven approach to intelligent hydrogel design, which holds the capacity to significantly enhance the applicability of EVs in clinical settings.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Hidrogéis/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Peptídeos/metabolismo
8.
Gen Psychiatr ; 36(5): e101143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859748

RESUMO

Background: There have been no effective treatments for slowing or reversing Alzheimer's disease (AD) until now. Growing preclinical evidence, including this study, suggests that mesenchymal stem cells-secreted exosomes (MSCs-Exos) have the potential to cure AD. Aims: The first three-arm, drug-intervention, phase I/II clinical trial was conducted to explore the safety and efficacy of allogenic human adipose MSCs-Exos (ahaMSCs-Exos) in patients with mild to moderate AD. Methods: The eligible subjects were assigned to one of three dosage groups, intranasally administrated with ahaMSCs-Exos two times per week for 12 weeks, and underwent follow-up visits at weeks 16, 24, 36 and 48. Results: No adverse events were reported. In the medium-dose arm, Alzheimer's Disease Assessment Scale-Cognitive section (ADAS-cog) scores decreased by 2.33 (1.19) and the basic version of Montreal Cognitive Assessment scores increased by 2.38 (0.58) at week 12 compared with baseline levels, indicating improved cognitive function. Moreover, the ADAS-cog scores in the medium-dose arm decreased continuously by 3.98 points until week 36. There were no significant differences in altered amyloid or tau deposition among the three arms, but hippocampal volume shrank less in the medium-dose arm to some extent. Conclusions: Intranasal administration of ahaMSCs-Exos was safe and well tolerated, and a dose of at least 4×108 particles could be selected for further clinical trials. Trial registration number: NCT04388982.

9.
ACS Nano ; 17(14): 14014-14031, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428140

RESUMO

Metabolic therapy targeting the metabolic addictions driven by gain-of-function mutations in KRAS is promising in fighting cancer through selective killing of malignant cells without hurting healthy cells. However, metabolic compensation and heterogeneity make current metabolic therapies ineffective. Here, we proposed a biomimetic "Nutri-hijacker" with "Trojan horse" design to induce synthetic lethality in KRAS-mutated (mtKRAS) malignant cells by hitchhiking and reprogramming the metabolic addictions. Nutri-hijacker consisted of the biguanide-modified nanoparticulate albumin that impaired glycolysis and a flavonoid that restrained glutaminolysis after the macropinocytosis of Nutri-hijacker by mtKRAS malignant cells. Nutri-hijacker suppressed the proliferation and spread of mtKRAS malignant cells while lowering tumor fibrosis and immunosuppression. Nutri-hijacker significantly extended the lifespan of pancreatic ductal adenocarcinoma (PDAC)-bearing mice when combined with the hydroxychloroquine-based therapies that failed in clinical trials. Collectively, our findings demonstrated that Nutri-hijacker is a strong KRAS mutation-customized inhibitor and the synthetic lethality based on mtKRAS-driven metabolic addictions might be a promising strategy against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomimética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Mutação , Neoplasias Pancreáticas
10.
ACS Nano ; 17(9): 8646-8662, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099675

RESUMO

Apoptotic vesicles (ApoVs) hold great promise for inflammatory regulation and tissue repair. However, little effort has been dedicated to developing ApoV-based drug delivery platforms, while the insufficient targeting capability of ApoVs also limits their clinical applications. This work presents a platform architecture that integrates apoptosis induction, drug loading, and functionalized proteome regulation, followed by targeting modification, enabling the creation of an apoptotic vesicle delivery system to treat ischemic stroke. Briefly, α-mangostin (α-M) was utilized to induce mesenchymal stem cell (MSC) apoptosis while being loaded onto MSC-derived ApoVs as an anti-oxidant and anti-inflammatory agent for cerebral ischemia/reperfusion injury. Matrix metalloproteinase activatable cell-penetrating peptide (MAP), a microenvironment-responsive targeting peptide, was modified on the surface of ApoVs to obtain the MAP-functionalized α-M-loaded ApoVs. Such engineered ApoVs targeted the injured ischemic brain after systemic injection and achieved an enhanced neuroprotective activity due to the synergistic effect of ApoVs and α-M. The internal protein payloads of ApoVs, upon α-M activation, were found engaged in regulating immunological response, angiogenesis, and cell proliferation, all of which contributed to the therapeutic effects of ApoVs. The findings provide a universal framework for creating ApoV-based therapeutic drug delivery systems for the amelioration of inflammatory diseases and demonstrate the potential of MSC-derived ApoVs to treat neural injury.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Encéfalo , Isquemia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
11.
Acta Pharm Sin B ; 13(2): 834-851, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873190

RESUMO

Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta, tau, and α-synuclein aggregates in neurodegenerative diseases. However, due to the complex structure and ambiguous pathogenic species of the misfolded proteins, a universal approach to remove the misfolded proteins remains unavailable. Here, we found that a polyphenol, α-mangostin, reprogrammed metabolism in the disease-associated microglia through shifting glycolysis to oxidative phosphorylation, which holistically rejuvenated microglial surveillance capacity to enhance microglial phagocytosis and autophagy-mediated degradation of multiple misfolded proteins. Nanoformulation of α-mangostin efficiently delivered α-mangostin to microglia, relieved the reactive status and rejuvenated the misfolded-proteins clearance capacity of microglia, which thus impressively relieved the neuropathological changes in both Alzheimer's disease and Parkinson's disease model mice. These findings provide direct evidences for the concept of rejuvenating microglial surveillance of multiple misfolded proteins through metabolic reprogramming, and demonstrate nanoformulated α-mangostin as a potential and universal therapy against neurodegenerative diseases.

12.
J Biomater Appl ; 37(9): 1542-1554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869874

RESUMO

Glucocorticoids (GCs) are the most effective and commonly used drugs for the treatment of systemic lupus erythematosus (SLE). However, a large number of side effects occur after long-term or high-dose glucocorticoid treatment, which severely restricts the use of glucocorticoids. Reconstituted high-density lipoprotein (rHDL), an emerging nanocarrier, is promising for targeted delivery to sites of inflammation and macrophages. Here, we prepared a steroid-loaded recombinant high-density lipoprotein and evaluated its therapeutic efficacy in a murine macrophage cell line (RAW264.7) and a lupus (MRL/lpr mice) mouse model. The obtained corticosteroid-loaded nanomedicine, named PLP-CaP-rHDL, exhibited desirable characteristics. Pharmacodynamics studies revealed that the nanoparticles could significantly reduce the levels of inflammatory cytokines in the macrophages in vitro and also effectively alleviate lupus nephritis in MRL/lpr mice without causing obvious side effects at a dose of 0.25 mg/kg. Thus, our newly developed steroid-loaded rHDL nanocarriers hold a great potential for anti-inflammatory therapy with reduced side effects and may provide a precise targeted therapy for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/tratamento farmacológico , Citocinas , Esteroides/uso terapêutico , Modelos Animais de Doenças
13.
Nat Commun ; 14(1): 435, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702831

RESUMO

The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Camundongos , Animais , Glioblastoma/patologia , Imunoterapia/métodos , Neoplasias Encefálicas/patologia , Terapia de Imunossupressão , Imunidade , Microambiente Tumoral
14.
Adv Sci (Weinh) ; 10(7): e2204596, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703613

RESUMO

Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca2+ ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca2+ overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg2+ ), a natural Ca2+ antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Mitocôndrias , Nanoestruturas , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Cognição , Peptidil-Prolil Isomerase F/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
15.
Small ; 18(47): e2203431, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180405

RESUMO

Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
16.
J Control Release ; 343: 314-325, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085700

RESUMO

Rheumatoid arthritis (RA) is a common inflammatory disease and its treatment is largely limited by drug ineffectiveness or severe side effects. In RA progression, multiple signalling pathways, such as hypoxia-inducible factor (HIF)-1α, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, act synergistically to maintain the inflammatory response. To downregulate HIF-1α, NF-κB, and MAPK expression, we proposed HIF-1α siRNA-loaded calcium phosphate nanoparticles encapsulated in apolipoprotein E3-reconstituted high-density lipoprotein (HIF-CaP-rHDL) for RA therapy. Here, we evaluated the potential of CaP-rHDL nanoparticles in RA therapy using a murine macrophage line (RAW 264.7) and a collagen-induced arthritis (CIA) mouse model. The CaP-rHDL nanoparticles showed significant anti-inflammatory effects along with HIF-1α knockdown and NF-κB and MAPK signalling pathway inhibition in lipopolysaccharide-activated macrophages. Moreover, they inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. In CIA mice, their intravenous administration resulted in high accumulation at the arthritic joint sites, and HIF-CaP-rHDL effectively suppressed inflammatory cytokine secretion and relieved bone erosion, cartilage damage, and osteoclastogenesis. Thus, HIF-CaP-rHDL demonstrated great potential in RA precision therapy by inhibiting multiple inflammatory signalling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nanopartículas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , NF-kappa B , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
17.
Adv Sci (Weinh) ; 8(2): 2001918, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511002

RESUMO

Cerebrovascular dysfunction characterized by the neurovascular unit (NVU) impairment contributes to the pathogenesis of Alzheimer's disease (AD). In this study, a cerebrovascular-targeting multifunctional lipoprotein-biomimetic nanostructure (RAP-RL) constituted with an antagonist peptide (RAP) of receptor for advanced glycation end-products (RAGE), monosialotetrahexosyl ganglioside, and apolipoprotein E3 is developed to recover the functional NVU and normalize the cerebral vasculature. RAP-RL accumulates along the cerebral microvasculature through the specific binding of RAP to RAGE, which is overexpressed on cerebral endothelial cells in AD. It effectively accelerates the clearance of perivascular Aß, normalizes the morphology and functions of cerebrovasculature, and restores the structural integrity and functions of NVU. RAP-RL markedly rescues the spatial learning and memory in APP/PS1 mice. Collectively, this study demonstrates the potential of the multifunctional nanostructure RAP-RL as a disease-modifying modality for AD treatment and provides the proof of concept that remodeling the functional NVU may represent a promising therapeutic approach toward effective intervention of AD.

18.
J Control Release ; 327: 688-702, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32931898

RESUMO

Despite the various mechanisms that involved in the pathogenesis of Alzheimer's disease (AD), neuronal damage and synaptic dysfunction are the key events leading to cognition impairment. Therefore, neuroprotection and neurogenesis would provide essential alternatives to the rescue of AD cognitive function. Here we demonstrated that extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs-derived EVs, abbreviated as EVs) entered the brain quickly and efficiently following intranasal administration, and majorly accumulated in neurons within the central nervous system (CNS). Proteomics analysis showed that EVs contained multiple proteins possessing neuroprotective and neurogenesis activities, and neuronal RNA sequencing showed genes enrichment in neuroprotection and neurogenesis following the treatment with EVs. As a result, EVs exerted powerful neuroprotective effect on Aß1-42 oligomer or glutamate-induced neuronal toxicity, effectively ameliorated neurologic damage in the whole brain areas, remarkably increased newborn neurons and powerfully rescued memory deficits in APP/PS1 transgenic mice. EVs also reduced Aß deposition and decreased microglia activation although in a less extent. Collectively, here we provide direct evidence that ADSCs-derived EVs may potentially serve as an alternative for AD therapy through alleviating neuronal damage and promoting neurogenesis.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Transtornos da Memória/terapia , Camundongos , Camundongos Transgênicos , Neurogênese , Neurônios
19.
Nano Lett ; 20(9): 6780-6790, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32809834

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) strongly resists standard therapies since KRAS-mutated cancer cells harbor endogenous resistance toward chemotherapy-induced apoptosis and tumor-associated macrophages (TAMs) activate stroma cells to create the nearly impenetrable matrix. Herein, we developed a tailored nanocomplex through the self-assembly of synthetic 4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate and Fe3+ followed by hyaluronic acid decoration, realizing chemodynamic therapy (CDT) to combat PDAC. By controllably releasing its components in a GSH-sensitive manner under the distinctive redox homeostasis in cancer cells and TAMs, the nanocomplex selectively triggered a Fenton reaction to induce oxidative damage in cancer cells and simultaneously repolarized TAMs to deactivate stromal cells and thus attenuate stroma. Compared to gemcitabine, CDT remarkably inhibited tumor growth and prolonged animal survival in orthotopic PDAC models without noticeable side effects. This study provides a promising strategy to improve the treatment of PDAC through CDT-mediated controlled cancer cells damage and reprogramming of the stromal microenvironment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral
20.
ACS Nano ; 14(6): 6636-6648, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32464051

RESUMO

The secondary damage in traumatic brain injury (TBI) can lead to lifelong disabilities, bringing enormous economic and psychological burden to patients and their families. Mitochondria, as the core mediator of the secondary injury cascade reaction in TBI, is an important target to prevent the spread of cell death and dysfunction. Thus, therapeutics that can accumulate at the damaged sites and subsequently rescue the functions of mitochondria would largely improve the outcome of TBI. Cyclosporine A (CsA), which can maintain the integrity of mitochondrial function, is among the most promising neuroprotective therapeutics for TBI treatment. However, the clinical application of CsA in TBI is largely hindered because of its poor access to the targets. Here, to realize targeted intracellular CsA delivery, we designed a lipoprotein biomimetic nanocarrier by incorporating CsA in the core and decorating a matrix metalloproteinase-9 activatable cell-penetrating peptide onto the surface of the lipoprotein-mimic nanocarrier. This CsA-loaded tailored reconstituted lipoprotein efficiently accumulated at the damaged brain sites, entered the target cells, bound to the membrane of mitochondria, more efficiently reduced neuronal damage, alleviated neuroinflammation, and rescued memory deficits at the dose 1/16 of free CsA in a controlled cortical impact injury mice model. The findings provide strong evidence that the secondary damages in TBI can be well controlled through targeted CsA delivery and highlight the potential of a lipoprotein biomimetic nanocarrier as a flexible nanoplatform for the management of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Humanos , Lipoproteínas , Camundongos , Mitocôndrias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA