Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0304628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39250484

RESUMO

Adzuki bean, an important legume crop, exhibits poor tolerance to low temperatures. To investigate the effect of exogenous abscisic acid (ABA) on the physiological metabolism and yield resistance of adzuki bean under low-temperature stress, we conducted a potted experiment using Longxiaodou 4 (LXD 4) and Tianjinhong (TJH) as test materials and pre-sprayed with exogenous ABA at flowering stage continuously for 5 days with an average of 12°C and an average of 15°C, respectively. We found that, compared with spraying water, foliar spraying exogenous ABA increased the activities of antioxidants and the content of non-enzymatic antioxidants, effectively inhibited the increase of malondialdehyde (MDA), hydrogen peroxide (H2O2) content, O2-· production rate. Exogenous ABA induced the activation of endogenous protective mechanisms by increasing antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as elevated levels of non-enzymatic antioxidants including ascorbic acid (ASA) and glutathione (GSH). Moreover, the yield loss of 5.81%-39.84% caused by chilling stress was alleviated by spraying ABA. In conclusion, foliar spraying exogenous ABA can reduce the negative effects of low-temperature stress on the yield of Adzuki beans, which is essential to ensure stable production of Adzuki beans under low-temperature conditions.


Assuntos
Ácido Abscísico , Antioxidantes , Temperatura Baixa , Vigna , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Vigna/efeitos dos fármacos , Vigna/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo
2.
Front Plant Sci ; 15: 1413507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139723

RESUMO

Corn-soybean rotation is a cropping pattern to optimize crop structure and improve resource use efficiency, and nitrogen (N) fertilizer application is an indispensable tool to increase corn yields. However, the effects of N fertilizer application levels on corn yield and soil N storage under corn-soybean rotation have not been systematically studied. The experimental located in the central part of the Songnen Plain, a split-zone experimental design was used with two planting patterns of continuous corn (CC) and corn-soybean rotations (RC) in the main zone and three N application rates of 0, 180, and 360 kg hm-2 of urea in the secondary zone. The research has shown that RC treatments can enhance plant growth and increase corn yield by 4.76% to 79.92% compared to CC treatments. The amount of N fertilizer applied has a negative correlation with yield increase range, and N application above 180 kg hm-2 has a significantly lower effect on corn yield increase. Therefore, a reduction in N fertilizer application may be appropriate. RC increased soil N storage by improving soil N-transforming enzyme activity, improving soil N content and the proportion of soil organic N fractions. Additionally, it can improve plant N use efficiency by 1.4%-5.6%. Soybeans grown in corn-soybean rotations systems have the potential to replace more than 180 kg hm-2 of urea application. Corn-soybean rotation with low N inputs is an efficient and sustainable agricultural strategy.

3.
New Phytol ; 240(2): 676-693, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545368

RESUMO

Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aclimatação , Luz
4.
Artigo em Inglês | MEDLINE | ID: mdl-36554386

RESUMO

Increased rice production, which benefitted from cropping areas expansion and continuous N applications, resulted in severe increases in greenhouse gases (GHG) emissions from 1983 to 2019 in Heilongjiang Province, China. Therefore, field trials were performed in the high-cold Harbin region, Northeast China, to determine the efficiency of incorporating water regimes with N fertilization in minimizing the impact of rice production on GHG emissions. Two water-saving irrigation strategies, intermittent irrigation (W1) and control irrigation (W2), were used relative to continuous flooding (W0), and we combined them with six fertilized treatments. Our results demonstrated that W1 and W2 significantly decreased seasonal CH4 emissions by 19.7-30.0% and 11.4-29.9%, enhanced seasonal N2O emissions by 77.0-127.0% and 16.2-42.4%, and increased significantly yields by 5.9-12.7% and 0-4.7%, respectively, compared with W0. Although trade-offs occurred between CH4 and N2O emissions, W1 and W2 resulted in significant reductions in global warming potential (GWP). Moreover, low N rates (<120 kg N ha-1) performed better in GWP than high N rates. N fertilization and irrigation regimes had remarkable effects on rice yields and GWP. In conclusion, the incorporation of W1 and a N application under 120 kg N ha-1 could simultaneously mitigate GWP while enhancing production in black soils in high-cold Northeast China.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Agricultura/métodos , Nitrogênio , Óxido Nitroso/análise , Metano/análise , Solo , Água , China , Fertilizantes/análise
5.
Environ Sci Pollut Res Int ; 28(39): 54792-54801, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34014477

RESUMO

Inappropriate farm management practices can lead to increased agricultural inputs and changes in atmospheric greenhouse gas (GHG) emissions, impacting climate change. This study was initiated in 2012 to assess the potential for straw retention to mitigate the negative environmental impact of various cropping systems on the Songnen Plain using the life cycle assessment (LCA) method combined with field survey data. Straw retention (STR) and straw removal (STM) treatments were established in continuous corn (CC) and corn-soybean rotation (CS) systems in a split-plot experiment. The effects of straw retention on the carbon footprint (CF) of cropland under different cropping systems were compared. The CF under CC was 2434-2707 kg CO2 ha-1 year-1, 49-57% higher than that under CS. Nitrogen fertilizer produced the most CO2, accounting for 66-80% of the CF. The carbon balances of the CC and CS systems with STR were positive, with annual carbon sequestrations of 9633 and 2716 kg CO2 ha-1 year-1, respectively. The carbon balance (CB) of CC-STR was 255% higher than that of CS-STR. This study demonstrates that STR under CC cultivation is an environmentally friendly practice for agricultural production, can help achieve high-yield and low-carbon production in rainfed cropland, and can support the sustainable development of grain production in Northeast China.


Assuntos
Agricultura/métodos , Pegada de Carbono , Desenvolvimento Sustentável , China , Produtos Agrícolas/crescimento & desenvolvimento , Projetos de Pesquisa
6.
Sci Rep ; 10(1): 9525, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533096

RESUMO

Soil cadmium (Cd) pollution threatens food safety. This study aimed to identify genes related to Cd accumulation in rice. Low- (Shennong 315, short for S315) and high- (Shendao 47, short for S47) Cd-accumulative rice cultivars were incubated with CdCl2·2.5H2O. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify the modules and genes associated with Cd-accumulative traits of rice. After Cd stress treatment, the Cd content in various tissues of S315 was significantly higher than that of S47. In the stem nodes, the Cd distribution results of the two varieties indicated that the unelongated nodes near the root (short for node A) had a stronger ability to block Cd transfer upwards than the panicle node (short for node B). Cd stress induced huge changes in gene expression profiles. After analyzing the differentially expressed genes (DEGs) in significantly correlated WGCNA modules, we found that genes related to heavy metal transportation had higher expression levels in node A than that in node B, such as Copper transporter 6 (OS04G0415600), Zinc transporter 10 (OS06G0566300), and some heavy-metal associated proteins (OS11G0147500, OS03G0861400, and OS10G0506100). In the comparison results between S315 and S47, the expression of chitinase (OS03G0679700 and OS06G0726200) was increased by Cd treatment in S315. In addition, OsHSPs (OS05G0460000, OS08G0500700), OsHSFC2A (OS02G0232000), and OsDJA5 (OS03G0787300) were found differentially expressed after Cd treatment in S315, but changed less in S47. In summary, different rice varieties have different processes and intensities in response to Cd stress. The node A might function as the key tissue for blocking Cd upward transport into the panicle via vigorous processes, including of heavy metal transportation, response to stress, and cell wall.


Assuntos
Cádmio/toxicidade , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas/genética , Oryza/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Oryza/genética , Oryza/fisiologia , Fenótipo , Poluentes do Solo/toxicidade , Especificidade da Espécie
7.
J Exp Bot ; 69(12): 3037-3051, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29648606

RESUMO

Chloroplast development is a highly complex process and the regulatory mechanisms have not yet been fully characterized. In this study, we identified Early Chloroplast Development 1 (ECD1), a chloroplast-localized pentatricopeptide repeat protein (PPR) belonging to the PLS subfamily. Inactivation of ECD1 in Arabidopsis led to embryo lethality, and abnormal embryogenesis occurred in ecd1/+ heterozygous plants. A decrease in ECD1 expression induced by RNAi resulted in seedlings with albino cotyledons but normal true leaves. The aberrant morphology and under-developed thylakoid membrane system in cotyledons of RNAi seedlings suggests a role of ECD1 specifically in chloroplast development in seedlings. In cotyledons of ECD1-RNAi plants, RNA-editing of rps14-149 (encoding ribosomal protein S14) was seriously impaired. In addition, dramatically decreased plastid-encoded RNA polymerase-dependent gene expression and abnormal chloroplast rRNA processing were also observed. Taken together, our results indicate that ECD1 is indispensable for chloroplast development at the seedling stage in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Edição de RNA , Tiorredoxinas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA