Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(5): 7442-7453, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695810

RESUMO

Conferring versatility to superhydrophobic materials is extremely desirable to advance their utility. Herein, we have developed a superhydrophobic material with montmorillonite as microskeleton supports and in situ grown ZIF-8 nanoparticles and loaded them with newly developed fluorescent carbon dots. In situ growth of the ZIF-8 on OMMT constructs a dense nanoscale rough structure and meanwhile self-assembly generates abundant microporous, thus forming unique hierarchical microporous/microsheet/nanoparticle tri-tier micro and nano structures. Then the multifunctional superhydrophobic coating is fabricated by a facile spraying technique using polydimethylsiloxane (PDMS) as a multifunctional polymer binder. The PDMS/RB-CDs/ZIF-8@OMMT exhibits superhydrophobicity with a water contact angle of 164.7° and a water sliding angle of 1.4°, which also possesses good self-cleaning performance. Moreover, novel carbon dots are developed in this work which can confer unique fluorescent properties and photothermal properties to materials. Fluorescence characterization reveals the multiple emission peaks among 300-800 nm and excitation wavelength dependence and independence. Photothermal experiments unveil an efficient light-to-heat conversion caused by the light traps and absorption wavelengths associated with photothermal heating. Benefiting from the dense microporous/microsheet/nanoparticle structures, the superhydrophobicity is still maintained after 120 cycles of abrasion. Moreover, electrochemical impedance spectroscopy (EIS) reveals a significant increase in impedance, which is associated with excellent corrosion resistance. The superhydrophobic coating also exhibits superior UV resistance and good thermal stability. Multifunctional fluorescent superhydrophobic materials will enable the development of various and potential applications in different fields.

2.
Langmuir ; 38(34): 10679-10689, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969813

RESUMO

In this paper, we reported a new kind of cooling and light-enhanced hydrophilic nanocomposite film (PE/JW-0.8%) with low-density polyethylene (LDPE) as the substrate. The wetting, photophysical, and mechanical properties of PE/JW-0.8% were tested. The emission band of the fluorescence centers at 420 nm, which is perfectly consistent with the absorption spectrum of plant photosynthesis. In addition, light can be scattered by PE/JW-0.8% to achieve a larger light distribution area. PE/JW-0.8% showed a good durability of hydrophilicity in the water rinsing test. Meanwhile, the elongation at the break of the film was significantly increased. Benefiting from the fence structure induced labyrinth effect, a maximum reduction of 6.7 °C in temperature monitoring for PE/JW-0.8% was observed in the detailed field experiments. Light intensity monitoring showed that light intensity in PE/JW-0.8% increased by a maximum of 57.1% compared to PE/LH. In the biological quality analysis of melon, it was found that the soluble sugar, soluble solid, and vitamin C content of melon increased by 13.34, 22.96, and 50.95%, respectively. In conclusion, these results confirm that PE/JW-0.8% has great application potential in the field of facility agriculture, buildings, and photovoltaic modules.


Assuntos
Nanocompostos , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Polietileno/química , Água/química
3.
Small ; 18(26): e2200895, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638464

RESUMO

Oxidative stress and local overactive inflammation have been considered major obstacles in diabetic wound treatment. Although antiphlogistic tactics have been reported widely, they are also challenged by pathogen contamination and compromised angiogenesis. Herein, a versatile integrated nanoagent based on 2D reductive covalent organic frameworks coated with antibacterial immuno-engineered exosome (PCOF@E-Exo) is reported to achieve efficient and comprehensive combination therapy for diabetic wounds. The E-Exo is collected from TNF-α-treated mesenchymal stem cells (MSCs) under hypoxia and encapsulated cationic antimicrobial carbon dots (CDs). This integrated nanoagent not only significantly scavenges reactive oxygen species and induces anti-inflammatory M2 macrophage polarization, but also stabilizes hypoxia-inducible factor-1α (HIF-1α). More importantly, the PCOF@E-Exo exhibits intriguing bactericide capabilities toward Gram-negative, Gram-positive, and drug-resistant bacteria, showing favorable intracellular bacterial destruction and biofilm permeation. In vivo results demonstrate that the synergetic impact of suppressing oxidative injury and tissue inflammation, promoting angiogenesis and eradicating bacterial infection, could significantly accelerate the infected diabetic fester wound healing with better therapeutic benefits than monotherapy or individual antibiotics. The proposed strategy can inspire further research to design more delicate platforms using the combination of immunotherapy with other therapeutic methods for more efficient ulcerated diabetic wounds treatments.


Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Inflamação , Neovascularização Patológica , Cicatrização
4.
Biomaterials ; 281: 121325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953332

RESUMO

Nanozyme-based catalytic therapy, an emerging therapeutic pattern, has significantly incorporated in the advancement of tumor therapy by generating lethal reactive oxygen species. Nevertheless, most of the nanozymes have mono catalytic performances with H2O2 in the tumor microenvironment (TME), which lowers their therapeutic efficiency. Herein, we design a newly-developed single-atom Fe dispersed N-doped mesoporous carbon nanospheres (SAFe-NMCNs) nanozyme with high H2O2 affinity for photothermal-augmented nanocatalytic therapy. The SAFe-NMCNs nanozyme possesses dual enzyme-mimic catalytic activity which not only acts as a catalase-mimic role to achieve ultrasonic imaging in tumor site by O2 generation, but also exhibits the superior peroxidase-mimic catalytic performance to generate •OH for nanocatalytic therapy. Besides, the SAFe-NMCNs nanozyme with strong optical absorption in the second near-infrared (NIR-II) region shows excellent photothermal conversion performance. The peroxidase-mimic catalytic process of SAFe-NMCNs nanozyme is realized using density functional theory (DFT). Both in vitro and in vivo results indicate that the SAFe-NMCNs nanozyme can efficiently suppress tumor cells growth by a synergistic therapy effect with photothermal-augmented nanocatalytic therapy. The work developed a single-atom-coordinated nanozyme with dual-enzyme catalytic performance and achieve hyperthermia-augmented nanocatalytic therapy effect, can open a window for potential biological applications.


Assuntos
Hipertermia Induzida , Neoplasias , Catálise , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Hipertermia Induzida/métodos , Neoplasias/terapia , Peroxidase , Microambiente Tumoral
5.
ACS Appl Mater Interfaces ; 13(36): 42396-42410, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472332

RESUMO

Chronic wound healing, impeded by bacterial infections and drug resistance, poses a threat to global human health. Antibacterial phototherapy is an effective way to fight microbial infection without causing drug resistance. Covalent organic frameworks (COFs) are a class of highly crystalline functional porous carbon-based materials composed of light atoms (e.g., carbon, nitrogen, oxygen, and borane), showing potential applications in the biomedical field. Herein, we constructed porphyrin-based COF nanosheets (TP-Por CON) for synergizing photodynamic and photothermal therapy under red light irradiation (e.g., 635 nm). Moreover, a nitric oxide (NO) donor molecule, BNN6, was encapsulated into the pore volume of the crystalline porous framework structure to moderately release NO triggered by red light irradiation for realizing gaseous therapy. Therefore, we successfully synthesized a novel TP-Por CON@BNN6-integrated heterojunction for thoroughly killing Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus in vitro. Our research identified that TP-Por CON@BNN6 has favorable biocompatibility and biodegradability, low phototoxicity, anti-inflammatory properties, and excellent mice wound healing ability in vivo. This study indicates that the TP-Por CON@BNN6-integrated heterojunction with multifunctional properties provides a potential strategy for COF-based gaseous therapy and microorganism-infected chronic wound healing.


Assuntos
Anti-Inflamatórios/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/efeitos da radiação , Anti-Inflamatórios/toxicidade , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Luz , Estruturas Metalorgânicas/efeitos da radiação , Estruturas Metalorgânicas/toxicidade , Camundongos Endogâmicos BALB C , Doadores de Óxido Nítrico/efeitos da radiação , Doadores de Óxido Nítrico/toxicidade , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Porfirinas/efeitos da radiação , Porfirinas/uso terapêutico , Porfirinas/toxicidade , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA