Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605010

RESUMO

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Assuntos
Fator de Crescimento de Hepatócito , Disgenesia da Tireoide , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caderinas/genética , Disgenesia da Tireoide/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
2.
Nat Commun ; 14(1): 8082, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057310

RESUMO

The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.


Assuntos
NF-kappa B , Células Epiteliais da Tireoide , Animais , Camundongos , Células Mieloides , Fator de Necrose Tumoral alfa , Peixe-Zebra
3.
J Med Genet ; 60(9): 874-884, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36898841

RESUMO

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.


Assuntos
Hipotireoidismo Congênito , Animais , Humanos , Camundongos , Hipotireoidismo Congênito/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Mutação , Proteínas Nucleares/genética , Hormônios Tireóideos/genética , Transativadores/genética , Fatores de Transcrição/genética , Peixe-Zebra
4.
Nat Commun ; 13(1): 775, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140214

RESUMO

Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1ß in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.


Assuntos
Microambiente Celular/imunologia , Doença de Hashimoto/metabolismo , Linfócitos/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Doenças Autoimunes/metabolismo , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy , Células Endoteliais/metabolismo , Humanos , Interleucina-1beta , Células Mieloides , Receptores de Superfície Celular , Glândula Tireoide/patologia
5.
Virulence ; 12(1): 360-376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33380272

RESUMO

Abnormalities in CD4+ T cell (Th cell) differentiation play an important role in the pathogenesis of viral myocarditis (VMC). Our previous studies demonstrated that activation of the cholinergic anti-inflammatory pathway (CAP) alleviated the inflammatory response. In addition, we observed that right cervical vagotomy aggravates VMC by inhibiting CAP. However, the vagus nerve's effect on differentiation of CD4+ T cells has not been studied in VMC mice to date. In this study, we investigated the effects of cervical vagotomy and the α7nAChR agonist pnu282987 on CD4+ T cell differentiation in a murine myocarditis model (BALB/c) infected with coxsackievirus B3 (CVB3). Splenic CD4+ T cells from CVB3-induced mice obtained and cultured to investigate the potential mechanism of CD4+ T cell differentiation. Each Th cell subset was analyzed by flow cytometry. Our results showed that right cervical vagotomy increased proportions of Th1 and Th17 cells and decreased proportions of Th2 and Treg cells in the spleen. Vagotomy-induced upregulation of T-bet, Ror-γ, IFN-γ, and IL-17 expression while downregulating the expression of Gata3, Foxp3, and IL-4 in the heart. In addition, we observed upregulated levels of proinflammatory cytokines, aggravated myocardial lesions and cellular infiltration, and worsened cardiac function in VMC mice. Pnu282987 administration reversed these outcomes. Furthermore, vagotomy inhibited JAK2-STAT3 activation and enhanced NF-κB activation in splenic CD4+ T cells. The CD4+ T cell differentiation was related to JAK2-STAT3 and NF-κB signal pathways. In conclusion, vagus nerve modulates the inflammatory response by regulating CD4+ T cell differentiation in response to VMC.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/imunologia , Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Miocardite/imunologia , Miocardite/virologia , Nervo Vago/imunologia , Doença Aguda , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Enterovirus Humano B/classificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA