Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(1): 103188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980742

RESUMO

In the present study, we aimed to elucidate the effects of stevia extract on production performance, serum immune indexes, intestinal structure, and cecum microbial structure. We randomly divided eight hundred 46-wk-old Roman hens into 5 groups, with 8 replicates in each group and 20 chickens in each replicate. The control group was fed a basal diet, whereas the 4 experimental groups were fed 50, 100, 200, and 400 mg/kg stevia extracts. The study period was 24 wk. The addition of different concentrations of the stevia extract to the diet resulted in significant secondary changes in the egg production rate at 1 to 12 wk (P < 0.05). Furthermore, the addition of 50 and 100 mg/kg stevia extract to the diet significantly increased serum IgM and IgG levels in laying hens (P < 0.05) but linearly decreased serum IL-1ß levels (P < 0.05). Serum T-SOD activity linearly increased (P = 0.057); however, serum biochemical indexes showed no significant differences. Stevia extract tended to increase the ratio of the duodenal villi height to the depth of the crypt (P = 0.067), with no obvious lesions in the duodenum, jejunum, and ileum. In addition, stevia extract increased the relative abundance of species at the phylum level, with the abundance of Bacteroides and Firmicutes exhibiting significant secondary changes (P < 0.05). The ACE and Chao1 indexes suggested that stevia extract addition significantly increased the alpha diversity of cecum microorganisms in laying hens. Furthermore, NMDS analysis based on operational taxonomic units revealed that stevia extract addition increased the beta diversity of cecum microorganisms in laying hens. Adding a certain amount of stevia extract to feed can improve the production performance, immune ability, and intestinal health of laying hens to some extent, and we recommend an effective level of 200mg/kg of stevia extract for laying hen diets.


Assuntos
Antioxidantes , Stevia , Animais , Feminino , Suplementos Nutricionais/análise , Galinhas , Dieta/veterinária , Ração Animal/análise
2.
Food Chem ; 347: 129062, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476918

RESUMO

Walnut protein was hydrolyzed with different proteases to evaluate the hydrolytic efficiency and dipeptidyl peptidase IV (DPP-IV) inhibitory activity in vitro. All of walnut protein hydrolysates (WPHs) exhibited DPP-IV inhibitory activity and Alcalase-derived hydrolysate (WPH-Alc) with better DPP-IV inhibitory activity of 33.90% (at 0.50 mg/mL) was subsequently separated by ultrafiltration and cation exchange chromatography on a SP Sephadex C-25 column. The results showed that fractions with lower molecular weight and higher basic amino acid residues possessed stronger DPP-IV inhibitory activity. Comparably, the obtained fraction B with the yield of 19.80% had the highest DPP-IV inhibitory activity of 76.19% at 0.25 mg/mL. Moreover, nine novel DPP-IV inhibitory peptides were identified using MALDI-TOF/TOF-MS. Molecular docking revealed the peptides could interact with DPP-IV through hydrogen bonds, salt bridges, hydrophobic interactions, π-cation bonds and π-π bonds. The walnut DPP-IV inhibitory peptides showed better stability with heating treatment, pH treatment, or in vitro gastrointestinal digestion.


Assuntos
Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Juglans/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatografia por Troca Iônica , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Juglans/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisinas , Temperatura , Ultrafiltração
3.
Food Funct ; 11(11): 10047-10057, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33135695

RESUMO

In the study, antibacterial peptides were separated and identified from cottonseed protein hydrolysates and the interactions between antibacterial peptides and Escherichia coli were further investigated. Firstly, by using a combined strategy of Amberlite CG-50 ion exchange chromatography and reversed-phase high-performance liquid chromatography, three peptides with antibacterial activity were purified and identified, including HHRRFSLY, KFMPT, and RRLFSDY. Interestingly, HHRRFSLY and RRLFSDY exhibited higher inhibition activity with the IC50 value of 0.26 mg mL-1 and 0.58 mg mL-1 (p < 0.05), respectively. Flow cytometry results showed that the incubation of antibacterial peptides with E. coli could cause damage to the integrity of the E. coli cell membrane. Transmission electron microscopy and scanning electron microscopy results revealed the damage caused to the bacterial cell surface and the leakage of cytoplasmic content by the antibacterial peptides. Molecular docking studies indicated that HHRRFSLY, KFMPT, and RRLFSDY have a good binding affinity to the active sites of the surface protein (OmpF) mainly through a hydrogen bond and salt bridge. The results here showed that the antibacterial peptides derived from cottonseed protein could be used as a good choice for functional foods or related drugs, and also shed light on further studies of antibacterial mechanism.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Gossypium/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptídeos/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Sementes/química
4.
Biomacromolecules ; 18(10): 3273-3279, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28925690

RESUMO

Sulfate cellulose nanocrystal (CNC) dispersions always present specific self-assembled cholesteric mesophases which is easily affected by the inherent properties of particle size, surface charge, and repulsion or affinity interaction, and external field force generated from ionic potential of added electrolytes, magnetic or electric field, and mechanical shearing or stretching. Aiming at understanding the liquid crystal orientation and fiber alignment under high-voltage electric field, randomly distributed, uniform-aligned, or core-sheath nanofibrous mats involving charged CNCs and PVA were electrospun; and among them, specific straight arrayed fine nanofibers with average diameter of 270 nm were manufactured by using a simple and versatile gap collector. Moreover, arrayed composite nanofibers regularly aligned along the vertical direction of gap plates and selectively reflected frequent and continuous birefringence which was regarded as nematic phases of CNCs induced by the uniaxial stretching under high-voltage electric field. As a synergic effect of rigidness of nanocrystals and stretching orientation of nematic phases, the aligned nanofibrous arrays exhibited a higher tensile strength and strain than the randomly oriented or core-sheath nanofibrous mats at the same loading of CNCs. By contrast, mesophase transition of CNCs from cholesteric to nematic occurred in the coaxially spun core-sheath nanofibers at a loss of long-ranged chiral twist. Hence, the structure-effect relationship between liquid crystal orientation of charged nanorods in polymer-based fine nanofibers and the flexibility or mechanical integrity of the aligned fiber array will be favorable for strategic development of functional liquid crystal fabrics.


Assuntos
Celulose/química , Cristais Líquidos/química , Nanofibras/química , Nanopartículas/química , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA