Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JDS Commun ; 5(3): 185-189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646569

RESUMO

The primary objective of this study was to determine the antimicrobial resistance (AMR) profile of common mastitis pathogens on large Chinese dairy farms. A total of 673 isolates, including Staphylococcus aureus (14.41%, 97/673), coagulase-negative staphylococci (CNS, 52.30%, 352/673), Streptococcus agalactiae (5.64%, 38/673), non-agalactiae streptococci (7.42%, 50/673), Acinetobacter spp. (7.72%, 52/673), Escherichia spp. (6.39%, 43/673), and Klebsiella spp. (6.09%, 41/673), were collected from 15 large Chinese dairy farms in 12 provinces. The AMR profiles were measured using a microdilution method. Our results showed that more than 75% of Staph. aureus (87/97) and CNS (291/352) were resistant to penicillin (PEN). More than 30% of Escherichia spp. (15/43) showed resistance to ampicillin (AMP). However, less than 10% CNS and non-agalactiae streptococci showed resistance to amoxicillin/clavulanate (AMC; 1/352; 0/50), cephalexin (LEX; 1/352; 0/50), ceftiofur (EFT; 10/352; 0/50), and rifaximin (RIX; 21/352; 2/50); less than 10% Staph. aureus showed resistance to AMC (1/97), oxacillin (OX; 3/97), LEX (1/97), EFT (2/97), and RIX (2/97); less than 10% Strep. agalactiae showed resistance to PEN (3/38), AMC (0/38), LEX (0/38), EFT (0/38), and RIX (0/38); and less than 10% Escherichia spp. showed resistance to AMC (1/43) and EFT (4/43). These results suggested that most mastitis pathogens were susceptible to most antimicrobials with exceptions of Staph. aureus tested against penicillin or ampicillin and CNS against penicillin or oxacillin. To control the AMR threat in Chinese dairy farms, a nationwide surveillance program for AMR of bovine mastitis pathogens is needed.

2.
Front Vet Sci ; 10: 1292401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076566

RESUMO

Introduction: The emergence of multidrug-resistant (MDR) strains of Salmonella, which is a genus of important zoonotic pathogens, has aroused great public health concern worldwide. Methods: In this study, 167 strains of Salmonella were isolated from 947 samples from broiler farms, slaughterhouses, and markets in Shandong Province. Antibiotic sensitivity testing was performed, and 70 strains of Salmonella were screened out by whole-genome sequencing (WGS) to evaluate serotypes, antimicrobial resistance genes (ARGs), the prevalence of class 1 integrons, the plasmid carriage rate, and phylogenetic characteristics and for multilocus sequence typing (MLST). Results: The results showed that the 167 isolates showed the highest resistance to ampicillin (AMP, 87.4%), sulfamethoxazole (SF, 87.4%), compound sulfamethoxazole (SXT, 81.4%), nalidixic acid (NAL, 80.2%), and amoxicillin/clavulanic acid (A/C, 77.8%). All the strains were sensitive to meropenem (MEM), and 91.0% of the isolates were MDR strains. We screened a total of 45 ARGs, with the highest detection rate observed for the tetracycline (TET) resistance gene tet (A) (81.4%). A total of 21 types of plasmid replicons were detected in Salmonella, of which IncX1 was the most common (74.3%), and 62.9% of the isolates carried a class 1 integron. In addition, a total of 11 different serotypes were detected, with S. enteritidis as the predominant serovar., followed by S. infantis and S. Newport. Twelve different sequence types (STs) were detected, among which ST11 was the main type. There was a strong correspondence between serotypes and STs. We also found that S. Indiana and S. Kentucky had extremely high rates of resistance to ciprofloxacin (CIP) and third-generation cephalosporins. System-wide genome analysis showed the occurrence of long-distance transmission across fields. Conclusion: In conclusion, the detection of multidrug resistance and isolates carrying multidrug resistance genes is the main problem, and emergency strategies should be implemented to address this issue.

3.
Adv Sci (Weinh) ; 10(26): e2302950, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428467

RESUMO

Hyperinflammation elicited by lipopolysaccharide (LPS) that derives from multidrug-resistant Gram-negative pathogens, leads to a sharp increase in mortality globally. However, monotherapies aiming to neutralize LPS often fail to improve the prognosis. Here, an all-in-one drug delivery strategy equipped with bactericidal activity, LPS neutralization, and detoxification is shown to recognize, kill pathogens, and attenuate hyperinflammation by abolishing the activation of LPS-triggered acute inflammatory responses. First, bactericidal colistin results in rapid bacterial killing, and the released LPS is subsequently sequestered. The neutralized LPS is further cleared by acyloxyacyl hydrolase to remove secondary fatty chains and detoxify LPS in situ. Last, such a system shows high efficacy in two mouse infection models challenged with Pseudomonas aeruginosa. This approach integrates direct antibacterial activity with in situ LPS neutralizing and detoxifying properties, shedding light on the development of alternative interventions to treat sepsis-associated infections.


Assuntos
Antibacterianos , Lipopolissacarídeos , Animais , Camundongos , Antibacterianos/uso terapêutico , Colistina , Bactérias , Pseudomonas aeruginosa
4.
Front Microbiol ; 14: 1184139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293219

RESUMO

Introduction: Using black soldier fly larvae (BSFLs) to treat food waste is one of the most promising environmental protection technologies. Methods: We used high-throughput sequencing to study the effects of different nutritional compositions on the intestinal microbiota and digestive enzymes of BSF. Results: Compared with standard feed (CK), high-protein feed (CAS), high-fat feed (OIL) and high-starch feed (STA) had different effects on the BSF intestinal microbiota. CAS significantly reduced the bacterial and fungal diversity in the BSF intestinal tract. At the genus level, CAS, OIL and STA decreased the Enterococcus abundance compared with CK, CAS increased the Lysinibacillus abundance, and OIL increased the Klebsiella, Acinetobacter and Bacillus abundances. Diutina, Issatchenkia and Candida were the dominant fungal genera in the BSFL gut. The relative abundance of Diutina in the CAS group was the highest, and that of Issatchenkia and Candida in the OIL group increased, while STA decreased the abundance of Diutina and increased that of Issatchenkia. The digestive enzyme activities differed among the four groups. The α-amylase, pepsin and lipase activities in the CK group were the highest, and those in the CAS group were the lowest or the second lowest. Correlation analysis of environmental factors showed a significant correlation between the intestinal microbiota composition and digestive enzyme activity, especially α-amylase activity, which was highly correlated with bacteria and fungi with high relative abundances. Moreover, the mortality rate of the CAS group was the highest, and that of the OIL group was the lowest. Discussion: In summary, different nutritional compositions significantly affected the community structure of bacteria and fungi in the BSFL intestinal tract, affected digestive enzyme activity, and ultimately affected larval mortality. The high oil diet gave the best results in terms of growth, survival and intestinal microbiota diversity, although the digestive enzymes activities were not the highest.

5.
Cells ; 12(5)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36899887

RESUMO

Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1ß, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.


Assuntos
Inflamassomos , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Regulação para Cima , Inflamação , Trifosfato de Adenosina
6.
Vet Microbiol ; 247: 108757, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768210

RESUMO

The primary objective of this study was to determine the distribution of major pathogens causing mastitis and analyze the association of the main pathogens with the type of milk {milk samples collected from cows with mastitis of different severities, which consisted of subclinical mastitis (Lanzhou Mastitis Test weak positive, positive, and strong positive) and clinical mastitis}, region, season, bedding material, parity and lactation stage on large dairy farms. Fifteen large dairy farms in twelve major milk-producing provinces of China were enrolled in the study for approximately one year; 1,153 mastitis milk samples were collected and processed. The most frequently isolated pathogens were Staphylococcus spp. (39.03 %), Streptococcus spp. (11.01 %), Bacillus spp. (8.24 %), Aerococcus viridans (6.76 %), and Acinetobacter spp. (3.38 %), and most of these pathogens were environmental bacteria (67.53 %). Contagious pathogens (Staphylococcus aureus and Streptococcus agalactiae) were more prevalent in milk samples from bovine clinical mastitis cases than in milk samples from bovine subclinical mastitis cases. The percentages of Staphylococcus spp. and Bacillus spp. might be higher in northeastern farms than in farms located in other regions. A higher percentage of Staphylococcus spp. was observed in summer, while a lower proportion of Streptococcus spp. was detected in fall. Streptococcus agalactiae and Streptococcus uberis were more frequently isolated in farms using sand bedding, whereas Staphylococcus aureus, Staphylococcus haemolyticus and Bacillus licheniformis were more prevalent in farms using organic bedding. No obvious associations were found between the main mastitis pathogens and parity or lactation stage. Based on these findings, the dominant pathogens, types of milk, regions, seasons and bedding materials should be considered when designing mastitis prevention and control programs at large Chinese dairy farms.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/veterinária , Doenças dos Bovinos/epidemiologia , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Leite/microbiologia , Criação de Animais Domésticos , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/epidemiologia , Bovinos , Doenças dos Bovinos/microbiologia , China/epidemiologia , Indústria de Laticínios , Fazendas , Feminino , Prevalência , Fatores de Risco
7.
Front Microbiol ; 10: 2489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749783

RESUMO

Staphylococcus aureus is a bacterial pathogen that causes food poisoning, various infections, and sepsis. Effective strategies and new drugs are needed to control S. aureus associated infections due to the emergence and rapid dissemination of antibiotic resistance. In the present study, the antibacterial activity, potential mode of action, and applications of flavonoids from licorice were investigated. Here, we showed that glabrol, licochalcone A, licochalcone C, and licochalcone E displayed high efficiency against methicillin-resistant Staphylococcus aureus (MRSA). Glabrol, licochalcone A, licochalcone C, and licochalcone E exhibited low cytotoxicity without hemolytic activity based on safety evaluation. Glabrol displayed rapid bactericidal activity with low levels of resistance development in vitro. Meanwhile, glabrol rapidly increased bacterial membrane permeability and dissipated the proton move force. Furthermore, we found that peptidoglycan, phosphatidylglycerol, and cardiolipin inhibited the antibacterial activity of glabrol. Molecular docking showed that glabrol binds to phosphatidylglycerol and cardiolipin through the formation of hydrogen bonds. Lastly, glabrol showed antibacterial activity against MRSA in both in vivo and in vitro models. Altogether, these results suggest that glabrol is a promising lead compound for the design of membrane-active antibacterial agents against MRSA and can be used as a disinfectant candidate as well.

8.
Cell Death Dis ; 8(6): e2863, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594408

RESUMO

Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. Autophagy has an important protective role in various renal injuries, but the role of autophagy in Pb-elicited nephrotoxicity remains largely unknown. In this study, Pb promoted the accumulation of autophagosomes in primary rat proximal tubular (rPT) cells, and subsequent findings revealed that this autophagosome accumulation was caused by the inhibition of autophagic flux. Moreover, Pb exposure did not affect the autophagosome-lysosome fusion in rPT cells. Next, we found that Pb caused lysosomal alkalinization, may be through suppression of two V-ATPase subunits. Simultaneously, Pb inhibited lysosomal degradation capacity by affecting the maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Furthermore, translocation of CTSB and CTSD from lysosome to cytoplasm was observed in this study, suggesting that lysosomal membrane permeabilization (LMP) occurred in Pb-exposed rPT cells. Meanwhile, Pb-induced caspase-3 activation and apoptosis were significantly but not completely inhibited by CTSB inhibitor (CA 074) and CTSD inhibitor (pepstatin A), respectively, demonstrating that LMP-induced lysosomal enzyme release was involved in Pb-induced apoptosis in rPT cells. In conclusion, Pb-mediated autophagy blockade in rPT cells is attributed to the impairment of lysosomal function. Both inhibition of autophagic flux and LMP-mediated apoptosis contribute to Pb-induced nephrotoxicity in rPT cells.


Assuntos
Autofagia/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Nefropatias , Túbulos Renais Proximais , Chumbo/toxicidade , Lisossomos , Animais , Células Cultivadas , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Ratos , Ratos Sprague-Dawley
9.
Toxicology ; 383: 13-23, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28347754

RESUMO

Previous studies have shown that subcellular Ca2+ redistribution is involved in Cd-induced autophagy inhibition in primary rat proximal tubular (rPT) cells, but the mechanism remains unclear. In this study, the status of autophagic flux was monitored by the GFP and RFP tandemly tagged LC3 method. Pharmacological inhibition of cytosolic Ca2+ concentration ([Ca2+]c) with 2-APB or BAPTA-AM significantly alleviated Cd-elevated yellow puncta formation and restored Cd-inhibited red puncta formation, while thapsigargin (TG) had the opposite regulatory effect, demonstrating that Cd-induced [Ca2+]c elevation inhibited the autophagic flux in rPT cells. Resultantly, Cd-induced autophagosomes accumulation was obviously modulated by 2-APB, BAPTA-AM and TG, respectively. Meanwhile, blockage of autophagosome-lysosome fusion and decreased recruitment of Rab7 to autophagosomes by Cd exposure was noticeably restored by 2-APB or BAPTA-AM, but co-treatment with Cd and TG further impaired Cd-induced autophagy arrest. Moreover, Cd-induced oxidative stress intimately correlated with cytosolic Ca2+ mobilization, and N-acetylcysteine (NAC) markedly rescued Cd-blocked autophagosome-lysosome fusion and recruitment of Rab7 to autophagosomes in rPT cells, implying that Cd-induced autophagy inhibition was due to [Ca2+]c elevation-triggered oxidative stress. In summary, these results suggest that Cd-mediated autophagy inhibition in rPT cells is dependent on cytosolic Ca2+ overload. Elevation of [Ca2+]c inhibited the autophagosome-lysosome fusion to block the degradation of autophagosomes, which aggravated Cd-induced cytotoxicity in rPT cells.


Assuntos
Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Túbulos Renais Proximais/citologia , Animais , Autofagossomos/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Citosol/metabolismo , Lisossomos/efeitos dos fármacos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
10.
J Biochem Mol Toxicol ; 31(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27762461

RESUMO

Previous study has demonstrated that puerarin (PU) exerts nephroprotective effect against Pb-induced cytotoxicity in primary rat proximal tubular (rPT) cells. Autophagy can protect cells from various cytotoxic stimuli, but its role in the process of PU against Pb-induced nephrotoxicity is still unknown. This study aims to investigate whether PU can alleviate Pb-induced renal damage by recovering autophagy. Data showed that Pb inhibited the autophagic flux, as evidenced by the accumulation of LC3-II and p62 as well as the confocal microscopy analysis of GFP-LC3 puncta and punctate spots of monodansylcadaverine staining, whereas coadministration of PU could restore Pb-induced autophagy inhibition. Moreover, PU dramatically enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins p70S6 kinase (p70S6K) and 4E-binding protein 1 (4E-BP1) in Pb-exposed rPT cells. Collectively, these evidence suggested that PU restored the impaired autophagic flux in Pb-treated rPT cells partly by activating autophagy via AMPK/mTOR-mediated signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Isoflavonas/administração & dosagem , Túbulos Renais Proximais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular , Túbulos Renais Proximais/patologia , Chumbo/toxicidade , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Chem Biol Interact ; 260: 219-231, 2016 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-27717697

RESUMO

Puerarin (PU) is a potent free radical scavenger with a protective effect in nephrotoxin-mediated oxidative damage. Here, we show a novel molecular mechanism by which PU exerts its anti-apoptotic effects in cadmium (Cd)-exposed primary rat proximal tubular (rPT) cells. Morphological assessment and flow cytometric analysis revealed that PU significantly decreased Cd-induced apoptotic cell death of rPT cells. Administration of PU protected cells against Cd-induced depletion of mitochondrial membrane potential (ΔΨm) and lipid peroxidation. Cd-mediated mitochondrial permeability transition pore (MPTP) opening, disruption of mitochondrial ultrastructure, mitochondrial cytochrome c (cyt-c) release, caspase-3 activation and subsequently poly ADP-ribose polymerase (PARP) cleavage could be effectively blocked by the addition of PU. Moreover, up-regulation of Bcl-2 and down-regulation of Bax and hence increased Bcl-2/Bax ratio were observed with the PU administration. In addition, PU reversed Cd-induced ATP depletion by restoring ΔΨm to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU inhibited Cd-induced apoptosis in rPT cells by ameliorating the mitochondrial dysfunction.


Assuntos
Cádmio/toxicidade , Isoflavonas/farmacologia , Túbulos Renais Proximais/patologia , Mitocôndrias/metabolismo , Substâncias Protetoras/farmacologia , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoflavonas/administração & dosagem , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/ultraestrutura , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Modelos Biológicos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
12.
Biol Trace Elem Res ; 174(1): 166-176, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27116952

RESUMO

Previous study has demonstrated that mitochondrial-dependent apoptotic pathway is involved in the nephroprotective effect of puerarin (PU) against lead-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. To further clarify how PU exerts its antiapoptotic effects, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and subsequent apoptotic events in the process of PU against Pb-induced cytotoxicity in rPT cells. The results showed that Pb-mediated mitochondrial permeability transition pore (MPTP) opening together with mitochondrial cytochrome c release, activations of caspase-9 and caspase-3, and subsequent poly-ADP-ribose polymerase (PARP) cleavage can be effectively blocked by the addition of PU. Simultaneously, upregulation and downregulation of Bcl-2 and Bax with increased Bcl-2/Bax ratio due to PU administration further alleviated Pb-induced mitochondrial apoptosis. Moreover, PU can reverse Pb-induced ATP depletion by restoring mitochondrial fragmentation to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU produced a significant protection against Pb-induced mitochondrial apoptosis in rPT cells by inhibiting MPTP opening to ameliorate the mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , Túbulos Renais Proximais/metabolismo , Chumbo/toxicidade , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Animais , Células Cultivadas , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Cultura Primária de Células , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA