Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125233, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39418679

RESUMO

The immune defense and the repair function of the pulp tissue serve as the biological foundation of pulpotomy. The precise evaluation of the pulp inflammation extent and determining its reversibility are essential for the success of pulpotomy. The objective of this study was to classify the molecular-level of dental pulp cell physiology and inflammatory state based on the biochemical changes obtained by single-cell Raman spectroscopy. Firstly, we differentiated the growth of HDPCs (human dental pulp cells) under physiological states by employing Raman spectroscopy with multivariate statistical analysis. Raman spectroscopy reflected the biochemical changes at different growth phases, including the lag phase, log phase, and stationary phase. Secondly, we evaluated the optimal concentration and duration of Porphyromonas gingivalis lipopolysaccharide (P.g.LPS) stimulation to establish a six-level inflammation classification model of HDPCs. Thirdly, we performed label-free characterization of biological component changes in cells of different inflammation grades by Raman spectroscopy. As a result, the differences of peaks in the region 600-1800 cm-1 demonstrated the biochemical molecular alterations in the different inflammation grades of HDPCs. As inflammation progresses in steps, protein peaks increased first and then decreased, while lipid and nucleic acid peaks gradually decreased compared to unstimulated cells. However, when the inflammatory stimulation reached grade V, the changes in the biological properties were characterized by a recovery in protein and lipid content, and a decrease in nucleic acid content. We then established the diagnostic model using the Raman spectra of HDPCs in physiological and inflammatory states, which had a prediction accuracy of 100 % and 97.4 %, respectively. Finally, we determined the reversibility threshold of HDPCs at different grades of inflammation. We observed that the inflammation of grade I and II cells had potential reversibility and could be attempted to be retained. In conclusion, Raman spectroscopy combined with multivariate statistical analysis has potential possibility to effectively distinguish the degree of inflammation in the dental pulp, thus providing new tools and perspectives on pulpotomy in clinical practice.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39099414

RESUMO

Through genome-wide association studies (GWAS) and integrated expression quantitative trait locus (eQTL) analyses, numerous susceptibility genes ("eGenes", whose expressions are significantly associated with common variants) associated with systemic lupus erythematosus (SLE) have been identified. Notably, a subset of these eGenes is correlated with disease activity. However, the precise mechanisms through which these genes contribute to the initiation and progression of the disease remain to be fully elucidated. In this investigation, we initially identify SPATS2L as an SLE eGene correlated with disease activity. eSignaling and transcriptomic analyses suggest its involvement in the type I interferon (IFN) pathway. We observe a significant increase in SPATS2L expression following type I IFN stimulation, and the expression levels are dependent on both the concentration and duration of stimulation. Furthermore, through dual-luciferase reporter assays, western blot analysis, and imaging flow cytometry, we confirm that SPATS2L positively modulates the type I IFN pathway, acting as a positive feedback regulator. Notably, siRNA-mediated intervention targeting SPATS2L, an interferon-inducible gene, in peripheral blood mononuclear cells (PBMCs) from patients with SLE reverses the activation of the interferon pathway. In conclusion, our research highlights the pivotal role of SPATS2L as a positive-feedback regulatory molecule within the type I IFN pathway. Our findings suggest that SPATS2L plays a critical role in the onset and progression of SLE and may serve as a promising target for disease activity assessment and intervention strategies.

3.
Brain Behav Immun ; 122: 604-616, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187048

RESUMO

The prevalence of bacterial infections significantly increases among patients with severe traumatic brain injury (STBI), leading to a notable rise in mortality rates. While immune dysfunctions are linked to the incidence of pneumonia, our observations indicate that endogenous pathogens manifest in the lungs post-STBI due to the migration of gut commensal bacteria. This translocation involves gut-innervating nociceptor sensory neurons, which are crucial for host defense. Following STBI, the expression of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons significantly decreases, despite an initial brief increase. The timing of TRPV1 defects coincides with the occurrence of pulmonary infections post-STBI. This alteration in TRPV1+ neurons diminishes their ability to signal bacterial injuries, weakens defense mechanisms against intestinal bacteria, and increases susceptibility to pulmonary infections via bacterial translocation. Experimental evidence demonstrates that pulmonary infections can be successfully replicated through the chemical ablation and gene interference of TRPV1+ nociceptors, and that these infections can be mitigated by TRPV1 activation, thereby confirming the crucial role of nociceptor neurons in controlling intestinal bacterial migration. Furthermore, TRPV1+ nociceptors regulate the immune response of microfold cells by releasing calcitonin gene-related peptide (CGRP), thereby influencing the translocation of gut bacteria to the lungs. Our study elucidates how changes in nociceptive neurons post-STBI impact intestinal pathogen defense. This new understanding of endogenous risk factors within STBI pathology offers novel insights for preventing and treating pulmonary infections.


Assuntos
Lesões Encefálicas Traumáticas , Nociceptores , Canais de Cátion TRPV , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Canais de Cátion TRPV/metabolismo , Nociceptores/metabolismo , Camundongos , Masculino , Gânglios Espinais/metabolismo , Translocação Bacteriana , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/fisiologia , Pulmão/metabolismo , Pulmão/microbiologia
5.
Fundam Res ; 4(1): 178-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933846

RESUMO

Theranostic agents that can be sensitively and specifically activated by the tumor microenvironment (TME) have recently attracted considerable attention. In this study, TME-activatable 3,3',5,5'-tetramethylbenzidine (TMB)-copper peroxide (CuO2)@poly(lactic-co-glycolic acid) (PLGA)@red blood cell membrane (RBCM) (TCPR) nanoparticles (NPs) for second near-infrared photoacoustic imaging-guided tumor-specific photothermal therapy were developed by co-loading CuO2 NPs and TMB into PLGA camouflaged by RBCMs. As an efficient H2O2 supplier, once exposed to a proton-rich TME, CuO2 NPs can generate H2O2 and Cu2+, which are further reduced to Cu+ by endogenous glutathione. Subsequently, the Cu+-mediated Fenton-like reaction produces cytotoxic ·OH to kill the cancer cells and induce TMB-mediated photoacoustic and photothermal effects. Combined with the RBCM modification-prolonged blood circulation, TCPR NPs display excellent specificity and efficiency in suppressing tumor growth, paving the way for more accurate, safe, and efficient cancer theranostics.

6.
J Ethnopharmacol ; 331: 118337, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY: Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS: ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS: UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION: Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.


Assuntos
Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Proteínas de Membrana , Sepse , Trombose , Animais , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Sepse/tratamento farmacológico , Trombose/tratamento farmacológico , Proteínas de Membrana/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ratos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ratos Sprague-Dawley , Camundongos
7.
Int J Biol Macromol ; 270(Pt 2): 132255, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729504

RESUMO

Melasma is an acquired hypermelanotic condition characterized by the presence of irregular light-to-dark brown macules that primarily manifest on the sun-exposed areas of the skin, particularly the face. The management of melasma poses significant challenges, as it is often recalcitrant to treatment and tends to recur despite successful treatment. In this study, we explored a safe, easy, and effective melasma treatment strategy. A hyaluronic acid (HA)-based microneedle (MN) patch loaded with tranexamic acid (TXA) was designed to deliver the necessary medication for melasma treatment. The MN patch features uniform needles with adequate mechanical strength and effective penetration and solubility in the skin without cytotoxicity. Remarkably, these MNs substantially reduce the thickness of the epidermis of melasma mice, curtail melanin production, and diminish dopachrome tautomerase (DCT) expression.


Assuntos
Ácido Hialurônico , Melanose , Agulhas , Ácido Tranexâmico , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Melanose/tratamento farmacológico , Ácido Tranexâmico/administração & dosagem , Ácido Tranexâmico/farmacologia , Animais , Camundongos , Melaninas , Solubilidade , Adesivo Transdérmico , Feminino , Modelos Animais de Doenças , Oxirredutases Intramoleculares
8.
Adv Healthc Mater ; 13(19): e2400391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568683

RESUMO

Persistent inflammation and disrupted immunoregulation are critical factors in impeding diabetic wound healing. While immunoregulatory hydrogel dressings hold significant promise for clinical applications in diabetic wound healing, the current application often demands intricate interventions and high-cost treatments involving cytokines and cell therapies. The development of single component immunoregulatory hydrogels remains a complex challenge. To address this issue, an active peptide hydrogel with immunoregulatory properties targeting the TLR4/NF-kB pathway, aiming to promote rapid diabetic wound healing, is engineered. The hydrogel sequence comprises naphthalene derivative, phenylalanine, and glycine to modulate hydrophilic/hydrophobic characteristics. The amino group on arginine contributes to tissue adhesion and regulation of intermolecular forces, ultimately yielding stable gels. The results underscore the formation of the peptide hydrogel (NFA) via the physical crosslinking of self-assembled nanofibers in water, thereby affording both excellent injectability and tissue adhesion. Notably, NFA demonstrates significant potential in promoting wound healing in a mouse model with full-thickness wounds by regulating macrophage responses in the inflammatory microenvironment through the TLR4/NF-kB pathway.


Assuntos
Hidrogéis , Peptídeos , Receptor 4 Toll-Like , Cicatrização , Receptor 4 Toll-Like/metabolismo , Animais , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , NF-kappa B/metabolismo , Diabetes Mellitus Experimental , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia
9.
JHEP Rep ; 6(1): 100926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38089552

RESUMO

Background & Aims: Association studies have greatly refined the important role of the major histocompatibility complex (MHC) region in autoimmune hepatitis (AIH). However, the effects of human leucocyte antigen (HLA) polymorphisms on AIH are not well established. The aim of this study is to systematically characterise the association of MHC variants with AIH in our well-defined cohort of patients. Methods: We performed an imputation-based analysis on the extensive association observed within the MHC region using the Han-MHC reference panel, and tested the comprehensive associations of HLA polymorphisms with AIH in 1622 Chinese AIH type 1 patients and 10,466 population controls. Results: A total of 588 HLA variants were significantly associated with AIH, with HLA-B∗35:01 (p = 8.17 × 10-304; odds ratio [OR] = 7.32) contributing the strongest signal. Stepwise conditional analysis revealed additional independent signals at HLA-B∗08:01 (p = 1.35 × 10-33; OR = 4.26) and rs7765379 (p = 5.08 × 10-18; OR = 1.66). A strong link between the lead HLA variant and clinical phenotypes of AIH was observed: patients with HLA-B∗35:01 were less frequently positive for ANA and tended to have higher serum AST and ALT levels at diagnosis, but lower serum IgG levels. Conclusions: Our study reveals three novel and independent variants at HLA-B∗35:01, HLA-B∗08:01, and rs7765379 associated with AIH across the whole MHC region in the Han Chinese population. The findings illustrate the value of the MHC region in AIH and provide a new perspective for the immunogenetics of AIH. Impact and implications: This study revealed three novel and independent variants associated with autoimmune hepatitis across the whole major histocompatibility complex region in the Han Chinese population. These findings are significant in identifying autoantigens, providing insights into the activation of the autoimmune processes, and further advancing our understanding of the immunogenetic basis underlying autoimmune hepatitis.

12.
J Occup Med Toxicol ; 18(1): 10, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430310

RESUMO

BACKGROUND: The contribution of bronchoalveolar lavage fluid (BALF) microbiota and mycobiota to silicosis has recently been noticed. However, many confounding factors can influence the accuracy of BALF microbiota and mycobiota studies, resulting in inconsistencies in the published results. In this cross-sectional study, we systematically investigated the effects of "sampling in different rounds of BALF" on its microbiota and mycobiota. We further explored the relationship between silicosis fatigue and the microbiota and mycobiota. METHODS: After obtaining approval from the ethics board, we collected 100 BALF samples from 10 patients with silicosis. Demographic data, clinical information, and blood test results were also collected from each patient. The characteristics of the microbiota and mycobiota were defined using next-generation sequencing. However, no non-silicosis referent group was examined, which was a major limitation of this study. RESULTS: Our analysis indicated that subsampling from different rounds of BALF did not affect the alpha- and beta-diversities of microbial and fungal communities when the centrifuged BALF sediment was sufficient for DNA extraction. In contrast, fatigue status significantly influenced the beta-diversity of microbes and fungi (Principal Coordinates Analysis, P = 0.001; P = 0.002). The abundance of Vibrio alone could distinguish silicosis patients with fatigue from those without fatigue (area under the curve = 0.938, 95% confidence interval [CI] 0.870-1.000). Significant correlations were found between Vibrio and haemoglobin levels (P < 0.001, ρ = -0.64). CONCLUSIONS: Sampling in different rounds of BALF showed minimal effect on BALF microbial and fungal diversities; the first round of BALF collection was recommended for microbial and fungal analyses for convenience. In addition, Vibrio may be a potential biomarker for silicosis fatigue screening.

13.
Small ; 19(45): e2303365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431203

RESUMO

The clinical application of sonodynamic therapy (SDT) is greatly limited by the low quantum yield of sonosensitizers and tumor microenvironment (TME). Herein, PtMo-Au metalloenzyme sonosensitizer is synthesized by modulating energy band structure of PtMo with Au nanoparticles. The surface deposition of Au simultaneously solves the carrier recombination and facilitates the separation of electrons (e- ) and holes (h+ ), effectively improving the reactive oxygen species (ROS) quantum yield under ultrasound (US). The catalase-like activity of PtMo-Au metalloenzymes alleviates hypoxia TME, thus enhancing the SDT-induced ROS generation. More importantly, tumor overexpressed glutathione (GSH) can serve as the hole scavenger, which is accompanied by a persistent depletion of the GSH, thus inactivating GPX4 for the accumulation of lipid peroxides. The distinctly facilitated SDT-induced ROS production is coupled with chemodynamic therapy (CDT)-induced hydroxyl radicals (•OH) to exacerbate ferroptosis. Furthermore, Au with glucose oxidase mimic activity can not only inhibit intracellular adenosine triphosphate (ATP) production and induce tumor cell starvation but also generate H2 O2 to facilitate CDT. In general, this PtMo-Au metalloenzyme sonosensitizer optimizes the defects of conventional sonosensitizers through surface deposition of Au to regulate TME, providing a novel perspective for US-based tumor multimodal therapy.


Assuntos
Nanopartículas Metálicas , Metaloproteínas , Neoplasias , Terapia por Ultrassom , Humanos , Ouro , Espécies Reativas de Oxigênio , Microambiente Tumoral , Glutationa , Linhagem Celular Tumoral , Neoplasias/terapia , Peróxido de Hidrogênio
14.
Adv Healthc Mater ; 12(29): e2302031, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515529

RESUMO

The presence of a biofilm matrix barrier and hypoxic microenvironment within the biofilm significantly impedes the efficacy of photodynamic therapy for bacterial biofilm infections. Herein, a phototherapeutic nanoagent with type-I photodynamic behavior and nitric oxide (NO) release performance is reported for overcoming biofilm-associated infectious diseases. Sodium nitroprusside (SNP), a NO donor, is loaded onto amino-modified mesoporous silica nanoparticles (MSN) to form MSN@SNP NPs. The resulting nanoparticles are further modified with a porphyrin-based metal-organic framework (Ti-TCPP MOF) to obtain MSN@MOF/SNP NPs (MMS NPs) for phototherapeutic applications. In the hypoxia biofilm microenvironment, the MMS NPs release NO to enhance the biofilm permeability and induce the generation of hydroxyl radical (•OH) and superoxide anion radical (O2 •- ) via Type-I photodynamic pathway under laser irradiation. Subsequently, the biofilm-associated infections are effectively eliminated through reactive oxygen species (ROS) and NO gas synergistic therapy. In addition, NO also stimulates collagen deposition and promotes angiogenesis in vivo. Therefore, the MMS NPs efficiently treat biofilm-related infections, providing an alternative approach to combat biofilm-associated infectious diseases.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Nanopartículas , Fotoquimioterapia , Humanos , Óxido Nítrico , Fotoquimioterapia/métodos , Dióxido de Silício , Hipóxia , Biofilmes , Fármacos Fotossensibilizantes/farmacologia
15.
Small ; 19(46): e2304058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475522

RESUMO

"Warburg Effect" shows that most tumor cells rely on aerobic glycolysis for energy supply, leading to malignant energy deprivation and an "internal alkaline external acid" tumor microenvironment. Destructing the "Warburg Effect" is an effective approach to inhibit tumor progression. Herein, an acidity-responsive nanoreactor (Au@CaP-Flu@HA) is fabricated for toxic acidosis and starvation synergistic therapy. In the nanoreactor, the fluvastatin (Flu) could reduce lactate efflux by inhibiting the lactate-proton transporter (monocarboxylate transporters, MCT4), resulting in intracellular lactate accumulation. Meanwhile, the glucose oxidase-mimic Au-nanocomposite consumes glucose to induce cell starvation accompanied by gluconic acid production, coupling with lactate to exacerbate toxic acidosis. Also, the up-regulated autophagic energy supply of tumor cells under energy deprivation and hypoxia aggravation is blocked by autophagy inhibitor CaP. Cellular dysfunction under pHi acidification and impaired Adenosine Triphosphate (ATP) synthesis under starvation synergistically promote tumor cell apoptosis. Both in vitro and in vivo studies demonstrate that this combinational approach of toxic-acidosis/starvation therapy could effectively destruct the "Warburg Effect" to inhibit tumor growth and anti-metastatic effects.


Assuntos
Acidose , Neoplasias , Humanos , Glicólise , Neoplasias/patologia , Ácido Láctico , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Biomater Res ; 27(1): 73, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481650

RESUMO

The advent of drug-resistant pathogens results in the occurrence of stubborn bacterial infections that cannot be treated with traditional antibiotics. Antibacterial immunotherapy by reviving or activating the body's immune system to eliminate pathogenic bacteria has confirmed promising therapeutic strategies in controlling bacterial infections. Subsequent studies found that antimicrobial immunotherapy has its own benefits and limitations, such as avoiding recurrence of infection and autoimmunity-induced side effects. Current studies indicate that the various antibacterial therapeutic strategies inducing immune regulation can achieve superior therapeutic efficacy compared with monotherapy alone. Therefore, summarizing the recent advances in nanomedicine with immunomodulatory functions for combating bacterial infections is necessary. Herein, we briefly introduce the crisis caused by drug-resistant bacteria and the opportunity for antibacterial immunotherapy. Then, immune-involved multimodal antibacterial therapy for the treatment of infectious diseases was systematically summarized. Finally, the prospects and challenges of immune-involved combinational therapy are discussed.

19.
Heliyon ; 9(5): e15152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251840

RESUMO

Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.

20.
Adv Healthc Mater ; 12(26): e2300985, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37186891

RESUMO

The application of medical implants has greatly improved the survival rate and life quality of patients. Nevertheless, in recent years, there are increasing cases of implant dysfunction or failure because of bacterial infections. Despite significant improvements in biomedicine, there are still serious challenges in the treatment of implant-related infections. With the formation of bacterial biofilms and the development of bacterial resistance, these limitations lead to a low efficacy of conventional antibiotics. To address these challenges, it is urgent to exploit innovative treatment strategies for implant-related infections. Based on these ideas, environment-responsive therapeutic platforms with high selectivity, low drug resistance, and minor dose-limiting toxicity have attracted widespread attention. By using exogenous/endogenous stimuli, the antibacterial activity of therapeutics can be activated on demand and exhibit remarkable therapeutic effects. Exogenous stimuli include photo, magnetism, microwave, and ultrasound. Endogenous stimuli mainly include the pathological characteristics of bacterial infections such as acidic pH, anomalous temperature, and abnormal enzymatic activities. In this review, the recent progress of environment-responsive therapeutic platforms with spatiotemporally controlled drug release/activation is systematically summarized. Afterward, the limitations and opportunities of these emerging platforms are highlighted. Finally, it is hoped that this review will offer novel ideas and techniques to combat implant-related infections.


Assuntos
Infecções Bacterianas , Biofilmes , Humanos , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Bactérias , Próteses e Implantes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA