Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(35): 15598-15606, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39173619

RESUMO

Coastal upwelling supplies nutrients supporting primary production while also adding the toxic trace metal mercury (Hg) to the mixed layer of the ocean. This could be a concern for human and environmental health if it results in the enhanced bioaccumulation of monomethylmercury (MMHg). Here, we explore how upwelling influences Hg cycling in the California Current System (CCS) biome through particle scavenging and sea-air exchange. We collected suspended and sinking particle samples from a coastal upwelled water parcel and an offshore non-upwelled water parcel and observed higher total particulate Hg and sinking flux in the upwelling region compared to open ocean. To further investigate the full dynamics of Hg cycling, we modeled Hg inventories and fluxes in the upper ocean under upwelling and non-upwelling scenarios. The model simulations confirmed and quantified that upwelling enhances sinking fluxes of Hg by 41% through elevated primary production. Such an enhanced sinking flux of Hg is biogeochemically important to understand in upwelling regions, as it increases the delivery of Hg to the deep ocean where net conversion to MMHg may take place.


Assuntos
Mercúrio , California , Poluentes Químicos da Água , Água do Mar/química , Monitoramento Ambiental
2.
New Phytol ; 239(6): 2057-2059, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376722
3.
Int J Biometeorol ; 67(8): 1363-1372, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330426

RESUMO

Characterizing airborne pollen concentrations is crucial for supporting allergy and asthma management; however, pollen monitoring is labor intensive and, in the USA, geographically limited. The USA National Phenology Network (USA-NPN) engages thousands of volunteer observers in regularly documenting the developmental and reproductive status of plants. The reports of flower and pollen cone status contributed to the USA-NPN's platform, Nature's Notebook, have the potential to help address gaps in pollen monitoring by providing real-time, spatially explicit information from across the country. In this study, we assessed whether observations of flower and pollen cone status contributed to Nature's Notebook can serve as effective proxies for airborne pollen concentrations. We compared daily pollen concentrations from 36 National Allergy Bureau (NAB) stations in the USA with flowering and pollen cone status observations collected within 200 km of each NAB station in each year, 2009-2021, for 15 common tree taxa using Spearman's correlations. Of 350 comparisons, 58% of correlations were significant (p < 0.05). Comparisons could be made at the largest numbers of sites for Acer and Quercus. Quercus demonstrated a comparatively high proportion of tests with significant agreement (median ρ = 0.49). Juglans demonstrated the strongest overall coherence between the two datasets (median ρ = 0.79), though comparisons were made at only a small number of sites. For particular taxa, volunteer-contributed flowering status observations demonstrate promise to indicate seasonal patterns in airborne pollen concentrations. The quantity of observations, and therefore, their utility for supporting pollen alerts, could be substantially increased through a formal observation campaign.


Assuntos
Hipersensibilidade , Quercus , Humanos , Alérgenos , Estações do Ano , Monitoramento Ambiental , Pólen
4.
Ecol Lett ; 24(8): 1697-1708, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34000078

RESUMO

Many species are responding to global warming by shifting their distributions upslope to higher elevations, but the observed rates of shifts vary considerably among studies. Here, we test the hypothesis that this variation is in part explained by latitude, with tropical species being particularly responsive to warming temperatures. We analyze two independent empirical datasets-shifts in species' elevational ranges, and changes in composition of forest inventory tree plots. Tropical species are tracking rising temperatures 2.1-2.4 times (range shift dataset) and 10 times (tree plot dataset) better than their temperate counterparts. Models predict that for a 100 m upslope shift in temperature isotherm, species at the equator have shifted their elevational ranges 93-96 m upslope, while species at 45° latitude have shifted only 37-42 m upslope. For tree plots, models predict that a 1°C increase in temperature leads to an increase in community temperature index (CTI), a metric of the average temperature optima of tree species within a plot, of 0.56°C at the equator but no change in CTI at 45° latitude (-0.033°C). This latitudinal gradient in temperature tracking suggests that tropical montane communities may be on an "escalator to extinction" as global temperatures continue to rise.


Assuntos
Mudança Climática , Árvores , Aquecimento Global , Temperatura
5.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA