Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740744

RESUMO

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias Ovarianas , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Proliferação de Células
2.
Mol Cell Endocrinol ; 589: 112253, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670220

RESUMO

Ovarian cancer stands as a formidable clinical challenge, with limited therapeutic options. This investigation delves into the intricate molecular mechanisms governing ovarian cancer progression and uncovers Centromere Protein K (CENPK) as a central figure in disease pathogenesis. Elevated CENPK levels within ovarian cancer tissues conspicuously align with adverse clinical outcomes, positioning CENPK as a promising prognostic biomarker. Deeper exploration reveals a direct transcriptional connection between CENPK and the E2F1 transcription factor and clearly establishes E2F1's role as the master regulator of CENPK expression in ovarian cancer. Our inquiry revealing a suppression of tumor-promoting signaling pathways, most notably the mTOR pathway, upon CENPK silencing. Intriguingly, CENPK renders ovarian cancer cells more responsive to the mTOR inhibitor rapamycin, introducing a promising avenue for therapeutic intervention. In summation, our study unravels the multifaceted role of CENPK in ovarian cancer progression. It emerges as a prognostic indicator, a pivotal mediator of cell proliferation and tumorigenicity, and a regulator of the mTOR pathway, shedding light on potential therapeutic avenues for this formidable disease.


Assuntos
Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , Neoplasias Ovarianas , Transdução de Sinais , Serina-Treonina Quinases TOR , Feminino , Humanos , Linhagem Celular Tumoral , Fator de Transcrição E2F1 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Prognóstico , Serina-Treonina Quinases TOR/metabolismo
3.
Cell Signal ; 119: 111180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642782

RESUMO

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Inflamação , Neoplasias Ovarianas , Transativadores , Ativação Transcricional , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
Chemistry ; 27(50): 12807-12814, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34252210

RESUMO

Phase engineering of the electrode materials in terms of designing heterostructures, introducing heteroatom and defects, improves great prospects in accelerating the charge storage kinetics during the repeated Li+ /Na+ insertion/deintercalation. Herein, a new design of Li/Na-ion battery anodes through phase regulating is reported consisting of F-doped SnO2 -SnS2 heterostructure nanocrystals with oxygen/sulfur vacancies (VO /VS ) anchored on a 2D sulfur/nitrogen-doped reduced graphene oxide matrix (F-SnO2-x -SnS2-x @N/S-RGO). Consequently, the F-SnO2-x -SnS2-x @N/S-RGO anode demonstrates superb high reversible capacity and long-term cycling stability. Moreover, it exhibits excellent great rate capability with 589 mAh g-1 for Li+ and 296 mAh g-1 at 5 A g-1 for Na+ . The enhanced Li/Na storage properties of the nanocomposites are not only attributed to the increase in conductivity caused by VO /VS and F doping (confirmed by DFT calculations) to accelerate their charge-transfer kinetics but also the increased interaction between F-SnO2-x -SnS2-x and Li/Na through heterostructure. Meanwhile, the hierarchical F-SnO2-x -SnS2-x @N/S-RGO network structure enables fast infiltration of electrolyte and improves electron/ion transportation in the electrode, and the corrosion resistance of F doping contributes to prolonged cycle stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA