RESUMO
Despite increasing evidences has highlighted the importance of mitochondria-lipid droplet (LD) coupling in maintaining lipid homeostasis, little progress in unraveling the role of mitochondria-LD coupling in hepatic lipid metabolism has been made. Additionally, diallyl disulfide (DADS), a garlic organosulfur compound, has been proposed to prevent hepatic steatosis; however, no studies have focused on the molecular mechanism to date. To address these gaps, this study investigated the systemic control mechanisms of mitochondria-LD coupling regulating hepatic lipid metabolism, and also explored their function in the process of DADS alleviating hepatic steatosis. To this end, an animal model of lipid metabolism, yellow catfish Pelteobagrus fulvidraco were fed four different diets (control, high-fat, DADS and high-fat + DADS diet) in vivo for 8 weeks; in vitro experiments were conducted to inhibit Mfn2/Atgl-mediated mitochondria-LD coupling in isolated hepatocytes. The key findings are: (1) the activations of hepatic LDs lipolysis and mitochondrial ß-oxidation are likely the major drivers for DADS alleviating hepatic steatosis; (2) the underlying mechanism is that DADS enhances mitochondria-LD coupling by promoting the interaction between mitochondrion-localized Mfn2 with LD-localized Atgl, which facilitates the hepatic LDs lipolysis and the transfer of fatty acids (FAs) from LDs to mitochondria for subsequent ß-oxidation; (3) Mfn2-mediated mitochondrial fusion facilitates mitochondria to form more PDM, which possess higher ß-oxidation capacity in hepatocytes. Significantly, the present research unveils a previously undisclosed mechanism by which Mfn2/Atgl-mitochondria-LD coupling relieves hepatic LDs accumulation, which is a conserved strategy from fish to tetrapod. This study provides another dimension for mitochondria-LD coupling and opens up new avenues for the therapeutic interventions in hepatic steatosis.
Assuntos
Compostos Alílicos , Dissulfetos , Fígado Gorduroso , Gotículas Lipídicas , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Dissulfetos/farmacologia , Dissulfetos/metabolismo , Compostos Alílicos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Peixes-Gato/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Mitochondria and endoplasmic reticulum (ER) contact sites (MERCS) constitute a functional communication platform for ER and mitochondria, and they play a crucial role in the lipid homeostasis of the liver. However, it remains unclear about the exact effects of MERCs on the neutral lipid synthesis of the liver. METHODS: In this study, the role and mechanism of MERCS in palmitic acid (PA)-induced neutral lipid imbalance in the liver was explored by constructing a lipid metabolism animal model based on yellow catfish. Given that the structural integrity of MERCS cannot be disrupted by the si-mitochondrial calcium uniporter (si-mcu), the MERCS-mediated Ca2+ signaling in isolated hepatocytes was intercepted by transfecting them with si-mcu in some in vitro experiments. RESULTS: The key findings were: (1) Hepatocellular MERCs sub-proteome analysis confirmed that, via activating Ip3r-Grp75-voltage-dependent anion channel (Vdac) complexes, excessive dietary PA intake enhanced hepatic MERCs. (2) Dietary PA intake caused hepatic neutral lipid deposition by MERCs recruiting Seipin, which promoted lipid droplet biogenesis. (3) Our findings provide the first proof that MERCs recruited Seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling, apart from MERCs's structural integrity. Noteworthy, our results also confirmed these mechanisms are conservative from fish to mammals. CONCLUSIONS: The findings of this study provide a new insight into the regulatory role of MERCS-recruited SEIPIN in hepatic lipid synthesis via Ip3r-Grp75-Vdac complex-mediated Ca2+ signaling, highlighting the critical contribution of MERCS in hepatic lipid homeostasis.
Assuntos
Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Lipogênese , Fígado , Mitocôndrias , Animais , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fígado/metabolismo , Mitocôndrias/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Hepatócitos/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Masculino , Sinalização do CálcioRESUMO
PURPOSE: To investigate the effect of electroacupuncture on the rehabilitation of patients after total knee arthroplasty (TKA). MATERIALS AND METHODS: Eighty patients with knee osteoarthritis who underwent total knee arthroplasty randomly divided into two groups, with 40 patients in each group. The control group was treated with traditional rehabilitation methods. In addition to traditional rehabilitation treatment, patients in the experimental group received electroacupuncture after operation, while patients in the control group received fake electroacupuncture. Both groups started electroacupuncture treatment and fake electroacupuncture treatment on the third day after operation for 10 consecutive days Data of patients in both groups were collected before surgery, three days after surgery, two weeks after surgery and one month after surgery, including the visual analogue scale(VAS), Knee Society Score (KSS) and range of motion (ROM). RESULTS: Compared with before treatment, after the treatment cycle, the VAS, KSS and ROM of both groups were significantly improved (p = 0.001, p = 0.001). Compared with the control group, the ROM and KSS of the experimental group were significantly improved at two weeks after surgery and one month after surgery, and the VAS was significantly decreased, with statistical significance (p < 0.05). CONCLUSIONS: Electroacupuncture therapy has a positive effect on the recovery of patients after total knee arthroplasty, which can alleviate the pain after total knee arthroplasty, promote the recovery of knee function, which is worthy of clinical promotion.
Electroacupuncture therapy combined with routine rehabilitation therapy can better promote the recovery of the knee after total knee replacement; significantly reduce the pain of the knee joint.Electroacupuncture therapy combined with routine rehabilitation therapy can effectively improve the function of the knee joint and promote the improvement of the joint motion of the knee joint.Electroacupuncture has short treatment time, quick effect, and high patient compliance and is worth applying to support recovery after total knee replacement.
RESUMO
Due to the ability of optical modulators to achieve rapid modulation of optical signals, meeting the demands of high-speed data transmission, modulators based on different novel nanomaterials have become one of the research hotspots over the past dacade. Recently, TiN/Ti3C2 heterojunction exhibits highly efficient thermo-optic performance and extremely strong stability. Therefore, we have demonstrated an all-optical modulator based on the principle of Michelson interference and the thermo-optic effect in this paper. The modulator employs a TiN/Ti3C2 heterojunction-coated microfiber (THM) and further demonstrates its ability to generate phase shifts through an ASE light source. The modulator, with a phase shift slope of 0.025π/mW, can also convert the phase shifts of signal light into amplitude modulation through Michelson interference. The fixed signal light wavelength is 1552.09 nm, and the modulation depth is stable at about 26.4 dB within a wavelength detuning range of -10 to 6 nm; The waveforms of signal light at modulation rates of 500 Hz, 1000 Hz, 2000 Hz, and 3000 Hz were tested, and a 3 dB modulation bandwidth of 2 kHz was measured. The all-optical modulator based on THM has the advantages of high efficiency and stability and has broad application prospects in the fields of all-optical signal processing and high-speed optical communication.
RESUMO
The adhesive strength between the sizing agent and carbon fiber (CF) plays a crucial role in improving the interfacial properties of composites, while such a vital aspect has been consistently disregarded. In this study, a hyperbranched waterborne polyurethane (HWPU) sizing agent was synthesized from biogenetically raw materials including gallic acid, l-Lysine diisocyanate and amylopectin. Concurrently, hydrogen-bonded cross-linked network structures were established utilizing a botanical polyphenol tannin as coupling agent to effectively connect CF with HWPU. This meticulous process yielded CF/nylon 6 composites with improved properties and their mechanical characteristics were systematically investigated. The findings showcased a noteworthy boost in flexural strength and interlaminar shear strength (ILSS), showing enhancements of 54.6 % and 61.4 %, respectively, surpassing those of untreated CF. Furthermore, the interfacial shear strength (IFSS) test indicated a remarkable 70.3 % improvement. This approach presents a highly promising concept aimed at developing sustainable green waterborne polyurethane sizing agent and improving the interfacial performance of CF composite materials.
Assuntos
Amilopectina , Fibra de Carbono , Ligação de Hidrogênio , Polifenóis , Poliuretanos , Poliuretanos/química , Polifenóis/química , Fibra de Carbono/química , Amilopectina/química , Água/química , Resistência ao CisalhamentoRESUMO
Background: The limitations of prostate-specific antigen (PSA) in diagnosing prostate cancer (PCa) necessitate the exploration of novel biomarkers. Recent studies suggest a potential link between coagulation markers, particularly fibrinogen and D-dimer, and PCa. Methods: A retrospective single-center analysis on 466 biopsy-undergone patients was conducted, categorized into PCa and benign prostatic hyperplasia (BPH) groups. Baseline and coagulation parameter levels were analyzed. Utilizing a Mendelian randomization (MR) approach, we investigated the causative relationship between D-dimer and PCa risk. Results: Individuals with PCa, compared with those with BPH, exhibited significantly higher D-dimer levels (P < .001), total PSA (P < .001), and PSA density (P < .001). Fibrinogen levels did not exhibit significant differences (P = .505). The MR analysis suggested a probable causal link between elevated D-dimer levels and an increased risk of PCa (odds ratio: 1.81, 95% confidence interval: 1.48-2.21, P = 7.4 × 10-9). Conclusions: This research highlights D-dimer as a potential biomarker for diagnosing PCa, supported by clinical and MR analyses. The study paves the way for future large-scale, multi-center research to corroborate these findings and further explore the relationship between coagulation markers and PCa mechanisms.
RESUMO
BACKGROUND: Patients who underwent total knee arthroplasty (TKA) often experience muscle loss due to pain and limited mobility. Nutritional supplementation and rehabilitation may positively affect the decline in muscle function. OBJECTIVE: The purpose of this study is to evaluate whether whey protein intervention, in addition to conventional rehabilitation training, is beneficial in improving muscle function and quality of life in patients after TKA. METHODS: 72 patients who met the criteria were selected for this randomized controlled study. For the experimental group, whey protein was used as a daily supplement for 12 weeks, while the control group was given a placebo, during which both groups received conventional rehabilitation training. Muscle strength and each of the secondary observables needed to be measured and statistically analyzed preoperatively and at 4, 8, and 12 weeks post-intervention. RESULTS: In total, 62 subjects completed the study: 32 in the experimental group and 30 in the control group. Both groups showed significant improvement in muscle strength, VAS, ROM, AKS and leg circumference after 12 weeks of treatment. Compared to the control group, patients in the experimental group showed significant improvement in muscle strength, VAS, ROM, AKS and leg circumference (p= 0.001, p= 0.002, p= 0.001, p= 0.001, p= 0.001, respectively) after 12 weeks of treatment. CONCLUSION: The 12-week intervention of whey protein nutritional supplement showed significant improvement in muscle mass and function among post-TKA patients besides aiding with conventional rehabilitation exercise.
Assuntos
Artroplastia do Joelho , Suplementos Nutricionais , Força Muscular , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/uso terapêutico , Artroplastia do Joelho/reabilitação , Masculino , Feminino , Força Muscular/fisiologia , Pessoa de Meia-Idade , Idoso , Amplitude de Movimento Articular/fisiologia , Qualidade de Vida , Músculo Esquelético , Resultado do TratamentoRESUMO
Hypoxia disrupts the endocrine system of teleosts. The liver plays important roles in the endocrine system, energy storage, and metabolic processes. The aim of this study was to investigate the sex-specific hepatic response of yellow catfish under chronic hypoxia at the multi-omics level. Common hepatic responses in both sexes included the HIF-1 signaling pathway, glycolysis/gluconeogenesis, and steroid biosynthesis. Hypoxia dysregulated primary bile acid biosynthesis, lipid metabolism, and vitellogenin levels in female fish. Endoplasmic reticulum function in females also tended to be disrupted by hypoxia, as evidenced by significantly enriched pathways, including ribosome, protein processing in the endoplasmic reticulum, and RNA degradation. Other pathways, including the TCA cycle, oxidative phosphorylation, and Parkinson's and Huntington's disease, were highly enriched by hypoxia in male fish, suggesting that mitochondrial function was dysregulated. In both sexes of yellow catfish, the cell cycle was arrested and apoptosis was inhibited under chronic hypoxia. Multi-omics suggested that SLC2A5, CD209, LGMN, and NEDD8 served as sex-specific markers in these fish under chronic hypoxia. Our results provide insights into hepatic adaptation to chronic hypoxia and facilitate our understanding of sex-specific responses in fish.
Assuntos
Peixes-Gato , Hipóxia , Fígado , Animais , Peixes-Gato/metabolismo , Masculino , Feminino , Fígado/metabolismo , Hipóxia/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Caracteres Sexuais , Proteômica/métodos , Metabolômica/métodos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , MultiômicaRESUMO
OBJECTIVE: The aim of this study was to investigate the efficacy of low-intensity, high-frequency shock waves in the treatment of temporomandibular joint disorders. METHODS: Twenty-six patients with temporomandibular joint disorder admitted to the Second Hospital of Shanxi Medical University from August 2022 to December 2022 were selected as study subjects and randomly divided into two groups, A and B, with 13 patients each. In Group A, there were 5 males and 8 females with an average age of 38.85 ± 11.03 years. In Group B, there were 4 males and 9 females with an average age of 39.15 ± 11.16 years. Group A was the control group, which received routine treatment (manual massage + transcutaneous electrical nerve stimulation + ultrashort wave therapy) plus sham shock wave therapy; Group B was the experimental group, which received routine treatment (manual massage + transcutaneous electrical nerve stimulation + ultrashort wave therapy) plus shock wave therapy. The routine treatment was administered once/day, five times per week for a total of 2 weeks of treatment. In addition, shock wave therapy was administered once every 5 days, and the treatment was administered three times. The treatment period was 2 weeks, and the two groups were compared before treatment, at the end of the treatment period, and 4 weeks after treatment. The pain level of the two groups was assessed by the visual analogue scale (VAS) before and after treatment, and the temporomandibular opening index (TOI) before and after treatment was compared between the two groups. VAS and TOI scores were evaluated using the Mann-Whitney U-test, the Kruskal-Wallis H-test and two-way ANOVA. RESULTS: There was no significant difference in the VAS score and temporomandibular opening index between the two groups before treatment (p = .829 and .75, respectively). After 2 weeks of treatment, the VAS score and temporomandibular joint opening index of both groups were significantly improved compared to those before therapy. In addition, the VAS score and temporomandibular joint opening index in the experimental group were significantly better than those in the control group (p < .001 and <.001, respectively). There was a small increase in scores 4 weeks after the treatment compared to just after the treatment period, but the difference was not significant. CONCLUSION: This is a preliminary small sample study that demonstrates the positive effect of using low-intensity, high-frequency shock waves on the treatment of temporomandibular joint disorders and is worthy of clinical promotion.
Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Massagem , Medição da Dor , Transtornos da Articulação Temporomandibular , Estimulação Elétrica Nervosa Transcutânea , Humanos , Feminino , Masculino , Adulto , Transtornos da Articulação Temporomandibular/terapia , Transtornos da Articulação Temporomandibular/fisiopatologia , Tratamento por Ondas de Choque Extracorpóreas/métodos , Resultado do Tratamento , Estimulação Elétrica Nervosa Transcutânea/métodos , Pessoa de Meia-Idade , Massagem/métodos , Amplitude de Movimento Articular/fisiologiaRESUMO
BACKGROUND: The mitochondria-associated endoplasmic reticulum membrane (MAM) is the central hub for endoplasmic reticulum and mitochondria functional communication. It plays a crucial role in hepatic lipid homeostasis. However, even though MAM has been acknowledged to be rich in enzymes that contribute to lipid biosynthesis, no study has yet investigated the exact role of MAM on hepatic neutral lipid synthesis. OBJECTIVES: To address these gaps, this study investigated the systemic control mechanisms of MAM on neutral lipids synthesis by recruiting seipin, focusing on the role of the inositol trisphosphate receptor-1,4,5(Ip3r)-75 kDa glucose-regulated protein (Grp75)-voltage-dependent anion channel (Vdac) complex and their relevant Ca2+ signaling in this process. METHODS: To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco), were fed 6 different diets containing a range of palmitic acid (PA) concentrations from 0-150 g/kg in vivo for 10 wk. In vitro, experiments were also conducted to intercept the MAM-mediated Ca2+ signaling in isolated hepatocytes by transfecting them with si-mitochondrial calcium uniporter (mcu). Because mcu was placed in the inner mitochondrial membrane (IMM), si-mcu cannot disrupt MAM's structural integrity. RESULTS: 1. Hepatocellular MAM subproteome analysis indicated excessive dietary PA intake enhanced hepatic MAM structure joined by activating Ip3r-Grp75-Vdac complexes. 2. Dietary PA intake induced hepatic neutral lipid accumulation through MAM recruiting Seipin, which activated lipid droplet biogenesis. Our findings also revealed a previously unidentified mechanism whereby MAM-recruited seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling and not only MAM's structural integrity. CONCLUSIONS: These results offer a novel insight into the MAM-recruited seipin in controlling hepatic lipid synthesis in a MAM structural integrity-dependent and Ca2+ signaling-dependent manner, highlighting the critical contribution of MAM in maintaining hepatic neutral lipid homeostasis.
RESUMO
OBJECTIVES: Trigeminal neuralgia (TN) is a severe chronic neuropathic pain that mainly affects the distribution area of the trigeminal nerve with limited treating efficacy. There are numerous treatments for TN, but currently the main clinical approach is to suppress pain by carbamazepine (CBZ). Brain-derived neurotrophic factor (BDNF) is closely related to chronic pain. This study aims to determine the effects of CBZ treatment on BDNF expression in both the trigeminal ganglion (TG) and serum of TN via a chronic constriction injury of the infraorbital nerve (ION-CCI) rat model. METHODS: The ION-CCI models were established in male Sprague-Dawley rats and were randomly divided into a sham group, a TN group, a TN+low-dose CBZ treatment group (TN+20 mg/kg CBZ group), a TN+medium-dose CBZ treatment group (TN+40 mg/kg CBZ group), and a TN+high-dose CBZ treatment group (TN+80 mg/kg CBZ group). The mechanical pain threshold in each group of rats was measured regularly before and after surgery. The expressions of BDNF and tyrosine kinase receptor B (TrkB) mRNA in TGs of rats in different groups were determined by real-time PCR, and the expression of BDNF protein on neurons in TGs was observed by immunofluorescence. Western Blotting was used to detect the protein expression of BDNF, TrkB, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) in TGs of rats in different groups. The expression of BDNF in the serum of rats in different groups was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results of mechanical pain sensitivity showed that there was no significant difference in the mechanical pain threshold in the right facial sensory area of the experimental rats in each group before surgery (all P>0.05). From the 3rd day after operation, the mechanical pain threshold of rats in the TN group was significantly lower than that in the sham group (all P<0.01), and the mechanical pain threshold of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 CBZ mg/kg group was higher than that in the TN group (all P<0.05). The BDNF and TrkB mRNA and protein expressions in TGs of rats in the TN group were higher than those in the sham group (all P<0.05), and those in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than the TN group (all P<0.05). The p-ERK levels in TG of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were significantly decreased compared with the TN group (all P<0.05). The BDNF and neuron-specific nuclear protein (NeuN) were mainly co-expressed in neuron of TGs in the TN group and they were significantly higher than those in the sham group (all P<0.05). The co-labeled expressions of BDNF and NeuN in TGs of the TN+ 80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). The results of ELISA showed that the level of BDNF in the serum of the TN group was significantly higher than that in the sham group (P<0.05). The levels of BDNF in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). Spearman correlation analysis showed that the BDNF level in serum was negatively correlated with mechanical pain threshold (r=-0.650, P<0.01). CONCLUSIONS: CBZ treatment can inhibit the expression of BDNF and TrkB in the TGs of TN rats, reduce the level of BDNF in serum of TN rats and the phosphorylation of ERK signaling pathway, so as to inhibit TN. The serum level of BDNF can be considered as an indicator for the diagnosis and prognosis of TN.
Assuntos
Carbamazepina , Dor Crônica , Neuralgia do Trigêmeo , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Carbamazepina/farmacologia , Proteínas Quinases , Ratos Sprague-Dawley , RNA Mensageiro , Gânglio Trigeminal/efeitos dos fármacos , Neuralgia do Trigêmeo/tratamento farmacológicoRESUMO
Many mechanisms responsible for COVID-19 pathogenesis are well-established, but COVID-19 includes features with unclear pathogenesis, such as autonomic dysregulation, coagulopathies, and high levels of inflammation. The receptor for the SARS-CoV-2 spike protein receptor-binding domain (RBD) is angiotensin-converting enzyme 2 (ACE2). We hypothesized that some COVID-19 patients may develop antibodies that have a negative molecular image of RBD sufficiently similar to ACE2 to yield ACE2-like catalytic activity-ACE2-like abzymes. To explore this hypothesis, we studied patients hospitalized with COVID-19 who had plasma samples available obtained about 7 days after admission. ACE2 is a metalloprotease that requires Zn2+ for activity. However, we found that the plasma from some patients studied could specifically cleave a synthetic ACE2 peptide substrate, even though the plasma samples were collected using disodium EDTA anticoagulant. When we spiked plasma with synthetic ACE2, no ACE2 substrate cleavage activity was observed unless Zn2+ was added or the plasma was diluted to decrease EDTA concentration. After processing samples by 100 kDa size exclusion columns and protein A/G adsorption, which depleted immunoglobulin by >99.99%, the plasma samples did not cleave the ACE2 substrate peptide. The data suggest that some patients with COVID-19 develop antibodies with abzyme-like activity capable of cleaving synthetic ACE2 substrate. Since abzymes can exhibit promiscuous substrate specificities compared to the enzyme whose active site image they resemble, and since proteolytic cascades regulate many physiologic processes, anti-RBD abzymes may contribute to some otherwise obscure COVID-19 pathogenesis. IMPORTANCE: We provide what we believe to be the first description of angiotensin-converting enzyme 2 (ACE2)-like enzymatic activity associated with immunoglobulin in COVID-19 patients. COVID-19 includes many puzzling clinical features that have unclear pathogenesis, including a hyperinflammatory state, abnormalities of the clotting cascade, and blood pressure instability. We hypothesized that some patients with COVID-19 patients may produce antibodies against SARS-CoV-2 with enzymatic activity, or abzymes, that target important proteolytic regulatory cascades. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein binds ACE2 on the surface of the future host cell. This means that the RBD has a negative molecular image of ACE2. We hypothesized that some antibodies produced against the RBD would have, in turn, a negative molecular image of the RBD sufficiently similar to ACE2 to have ACE2-like catalytic activity. In other words, some anti-RBD antibodies would be ACE2-like abzymes. Abzymes elicited by SARS-CoV-2 infection have the potential to affect host physiology.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos , Peptídeos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de CoronavírusRESUMO
Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. Anillin (ANLN) is an actin-binding protein that is involved in various malignancies, including PCa. However, the regulatory mechanism of ANLN in PCa remains unclear. Exploring the role of ANLN in PCa development and discovering novel therapeutic targets are crucial for PCa therapy. In the current work, we discovered that ANLN expression was considerably elevated in PCa tissues and cell lines when compared to nearby noncancerous prostate tissues and normal prostate epithelial cells. ANLN was associated with more advanced T stage, N stage, higher Gleason score, and prostate-specific antigen (PSA) level. In addition, we discovered that overexpression of ANLN promoted PCa cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, we performed RNA-seq to identify the regulatory influence of ANLN on the MAPK signal pathway. Furthermore, a favorable association between ANLN expression and IGF2BP1 expression was identified. The tumor-suppressive impact of ANLN downregulation on PCa cell growth was partially reversed by overexpressing IGF2BP1. Meanwhile, we discovered that ANLN can stabilize the proto-oncogene c-Myc and activate the MAPK signaling pathway through IGF2BP1. These findings indicate that ANLN could be a potential therapeutic target in PCa.
RESUMO
Metastatic progression is the primary cause of mortality in prostate cancer (PCa) patients. Although circular RNAs (circRNAs) have been implicated in cancer progression and metastasis, our current understanding of their role in PCa metastasis remains limited. In this study, we identified that circUBE3A(2,3,4,5), which originated from exons 2, 3, 4 and 5 of the human ubiquitin-protein ligase E3A (UBE3A) gene, was specifically downregulated in PCa tissues and correlated with the Gleason score, bone metastasis, and D'Amico risk classification. Through the in vitro and in vivo experiments, we demonstrated that overexpression of circUBE3A(2,3,4,5) inhibited PCa cell migration, invasion, metastasis, and proliferation. Mechanistically, circUBE3A(2,3,4,5) was found to bind to adenylate-uridylate-rich binding factor 1 (AUF1), promoting the translocation of AUF1 into the nucleus. This led to decreased AUF1 in the cytoplasm, resulting in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) mRNA instability and a subsequent reduction at the protein level. The downregulation of MTHFD2 further inhibited vimentin expression, thereby suppressing PCa cell epithelial-mesenchymal transition. Additionally, two pairs of the short-inverted repeats (TSIRs) in flanking introns were identified to synergistically facilitate the generation of circUBE3A(2,3,4,5) and other circRNAs. In summary, TSIRs-induced circUBE3A(2,3,4,5) acts as a suppressor of PCa metastasis by enhancing AUF1 nuclear translocation, reducing MTHFD2, and subsequently inhibiting vimentin expression. This study characterizes circUBE3A(2,3,4,5) as a functional circRNA and proposes it as a highly promising target for preventing PCa metastasis.
Assuntos
Neoplasias da Próstata , RNA Circular , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Gradação de Tumores , Neoplasias da Próstata/patologia , RNA Circular/genética , Vimentina/metabolismoRESUMO
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
RESUMO
OBJECTIVE: The aim of this study was to explore the effects of radial extracorporeal shock wave therapy (rESWT) in patients with anterior cruciate ligament(ACL) reconstruction(ACLR). METHODS: We conducted a randomized, controlled trial involving 72 eligible patients with ACL reconstruction in which we compared two strategies: the experimental group was standard rehabilitation plus rESWT and the control group was standard rehabilitation plus sham rESWT. The outcome was the change from baseline to 24 weeks in the average score on Lysholm knee joint score (LKS), range of motion (ROM), visual analogue scale (VAS) and International Knee Literature Committee (IKDC). RESULTS: Of 36 subjects assigned to rehabilitation plus rESWT, 4 lost to follow up. Of 36 assigned to rehabilitation plus sham rESWT, 5 lost to follow up. The LKS, ROM and IKDC scores of the experimental group were markedly increased at 3 and 6 weeks after treatment (P < 0.001), and the VAS was notably decreased (P < 0.001). However, there were no significant differences in the LKS, ROM, IKDC and VAS between the groups at 24 weeks after treatment (P > 0.05). CONCLUSION: The strategy of rehabilitation plus rESWT had better functional outcomes after ACL reconstruction. As such, our study demonstrates that rESWT is essential for patients with ACL reconstruction. Early use of rESWT can improve joint function, pain relief and ability of daily living. rESWT has a positive effect on the overall rehabilitation of patients.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Tratamento por Ondas de Choque Extracorpóreas , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Resultado do Tratamento , Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/cirurgiaRESUMO
Choline plays a crucial role in hepatic lipid homeostasis by acting as a major methyl-group donor. However, despite this well-accepted fact, no study has yet explored how choline's methyl-donor function contributes to preventing hepatic lipid dysregulation. Moreover, the potential regulatory role of Ire-1α, an ER-transmembrane transducer for the unfolded protein response (UPRer), in choline-mediated hepatic lipid homeostasis remains unexplored. Thus, this study investigated the mechanism by which choline prevents hepatic lipid dysregulation, focusing on its role as a methyl-donor and the involvement of Ire-1α in this process. To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco) were fed two different diets (adequate or deficient choline diets) in vivo for 10 weeks. The key findings of studies are as follows: 1. Dietary choline, upregulated selected lipolytic and fatty acid ß-oxidation transcripts promoting hepatic lipid homeostasis. 2. Dietary choline ameliorated UPRer and prevented hepatic lipid dysregulation mainly through ire-1α signalling, not perk or atf-6α signalling. 3. Choline inhibited the transcriptional expression level of ire-1α by activating site-specific DNA methylations in the promoter of ire-1α. 4. Choline-mediated ire-1α methylations reduced Ire-1α/Fas interactions, thereby further inhibiting Fas activity and reducing lipid droplet deposition. These results offer a novel insight into the direct and indirect regulation of choline on lipid metabolism genes and suggests a potential crosstalk between ire-1α signalling and choline-deficiency-induced hepatic lipid dysregulation, highlighting the critical contribution of choline as a methyl-donor in maintaining hepatic lipid homeostasis.
Assuntos
Peixes-Gato , Lipotrópicos , Animais , Lipotrópicos/metabolismo , Colina/farmacologia , Colina/metabolismo , Peixes-Gato/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Homeostase , LipídeosRESUMO
SREBPs, such as SREBP1 and SREBP2, were the key transcriptional factors regulating lipid metabolism. The processing of SREBPs involved many genes, such as scap, s1p, s2p, cideb. Here, we deciphered the full-length cDNA sequences of scap, srebp1, srebp2, s1p, s2p, cideb and cidec from yellow catfish Pelteobagrus fulvidraco. Their full-length cDNA sequences ranged from 1587 to 3884 bp, and their ORF length from 1191 to 2979 bp, encoding 396-992 amino acids. Some conservative domains were predicted, including the multiple transmembrane domains in SCAP, the bHLH-ZIP domain in SREBP1 and SREBP2, the ApoB binding region, ER targeting region and LD targeting region in CIDEb, the LD targeting region in the CIDEc, the conserved catalytic site and processing site in S1P, and the transmembrane helix domain in S2P. Their mRNA expression could be observed in the heart, spleen, liver, kidney, brain, muscle, intestine and adipose, but varied with tissues. The changes of their mRNA expression in responses to high-fat (HFD) and bile acid (BA) diets were also investigated in the brain, heart, intestine, kidney and spleen tissues. In the brain, HFD significantly increased the mRNA expression of seven genes (scap, srebp1, srebp2, s1p, s2p, cideb and cidec), and the BA attenuated the increase of scap, srebp1, srebp2, s1p, s2p, cideb and cidec mRNA expression induced by HFD. In the heart, HFD significantly increased the mRNA abundances of six genes (srebp1, srebp2, scap, s2p, cideb and cidec), and BA attenuated the increase of their mRNA abundances induced by HFD. In the intestine, HFD increased the cideb, s1p and s2p mRNA abundances, and BA attenuated the HFD-induced increment of their mRNA abundances. In the kidney, HFD significantly increased the scap, cidec and s1p mRNA expression, and BA diet attenuated the increment of their mRNA expression. In the spleen, HFD treatment increased the scap, srebp2, s1p and s2p mRNA expression, and BA diet attenuated HFD-induced increment of their mRNA expression. Taken together, our study elucidated the characterization, expression profiles and transcriptional response of seven lipid metabolic genes, which would serve as the good basis for the further exploration into their function and regulatory mechanism in fish.
Assuntos
Peixes-Gato , Metabolismo dos Lipídeos , Animais , Metabolismo dos Lipídeos/genética , Peixes-Gato/genética , Peixes-Gato/metabolismo , DNA Complementar/genética , Dieta , Fígado/metabolismo , RNA Mensageiro/genéticaRESUMO
The mitochondrial matrix serves as the principal locale for the process of fatty acids (FAs) ß-oxidation. Preserving the integrity and homeostasis of mitochondria, which is accomplished through ongoing fusion and fission events, is of paramount importance for the effective execution of FAs ß-oxidation. There has been no investigation to date into whether and how mitochondrial fusion directly enhances FAs ß-oxidation. The underlying mechanism of a balanced FAs ratio favoring hepatic lipid homeostasis remains largely unclear. To address such gaps, the present study was conducted to investigate the mechanism through which a balanced dietary FAs ratio enhances hepatic FAs ß-oxidation. The investigation specifically focused on the involvement of Mfn2-mediated mitochondrial fusion in the regulation of Cpt1α in this process. In the present study, the yellow catfish (Pelteobagrus fulvidraco), recognized as a model organism for lipid metabolism, were subjected to eight weeks of in vivo feeding with six distinct diets featuring varying FAs ratios. Additionally, in vitro experiments were conducted to inhibit Mfn2-mediated mitochondrial fusion in isolated hepatocytes, achieved through the transfection of hepatocytes with si-mfn2. Further, deletion mutants for both Mfn2 and Cpt1α were constructed to elucidate the critical regions responsible for the interactions between these two proteins within the system. The key findings were: (1) Substituting palmitic acid (PA) for fish oil (FO) proved to be enhanced in reducing hepatic lipid accumulation. This beneficial effect was primarily attributed to the activation of mitochondrial FAs ß-oxidation; (2) The balanced replacement of PA stimulated Mfn2-mediated mitochondrial fusion by diminishing Mfn2 ubiquitination, thereby enhancing its protein retention within the mitochondria; (3) Mfn2-mediated mitochondrial fusion promoted FAs ß-oxidation through direct interaction between Mfn2 and Cpt1α via its GTPase-domains, which is essential for the maintenance of Cpt1 activity. Notably, the present research results unveil a previously undisclosed mechanism wherein Mfn2-mediated mitochondrial fusion promotes FAs ß-oxidation by directly augmenting the capacity for FA transport into mitochondria (MT), in addition to expanding the mitochondrial matrix. This underscores the pivotal role of mitochondrial fusion in preserving hepatic lipid homeostasis. The present results further confirm that these mechanisms are evolutionarily conserved, extending their relevance from fish to mammals.
Assuntos
Óleos de Peixe , Ácido Palmítico , Animais , Ácido Palmítico/farmacologia , Óleos de Peixe/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial , Ácidos Graxos/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismoRESUMO
In the context of current communication systems, there is an urgent demand for more efficient and higher-speed optical signal processing technologies. Researchers are actively exploring new materials and devices to harness nonlinear optical phenomena, seeking advancements in this field. Nonlinear carbon materials, especially promising 2D materials, have garnered attention for their potential interaction with light and have become integral to the development of all-optical signal processing devices. This study focuses on utilizing a photonic device based on a nonlinear Au/CB composite material for optical Kerr switching. The application of Au/CB as a nonlinear material in the Kerr switch represents a noteworthy advancement, demonstrating its capability to modulate optical signals. By appropriately applying a pump light, the study achieves optical Kerr switching with an extinction ratio of approximately 15 dB in the fully off state of the signal light carrying a 10 GHz analog signal, marking a pioneering achievement in the field to the best of our knowledge. The experimental results, encompassing extinction ratios, signal control, and stability, not only validate the feasibility of this technology but also underscore its potential applicability within optical communication systems. The successful modulation and control of a 10 GHz analog signal showcase the practicality and effectiveness of the Au/CB-based optical Kerr switch. This progress contributes to the continuous evolution of optical Kerr switching, a crucial component in modern optical communication systems. Therefore, we believe that the Au/CB-based optical Kerr switch is an exceptionally promising and stable all-optical signal processing device. As the contemporary communication landscape evolves, the integration of this technology holds the potential to enhance the efficiency and speed of optical signal processing.