Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101327, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38590633

RESUMO

To investigate the effect of gelatin peptide on the inhibition of quality deterioration in stored pudding, gelatin peptide with antioxidant properties was added to pudding products. For this purpose, a pudding recipe containing gelatin peptides was created. The gelatin peptides were characterized based on their antioxidant activity and protein structure. It was found that gelatin peptides had better antioxidant properties, lower thermal stability and crystallinity, higher hydrophobic amino acid content, and greater surface hydrogen bond exposure than commercially available peptides. Properties such as the pH, colony growth, and sensory characteristics of the pudding were characterized at 4 °C and 25 °C. The results showed that the addition of 0.5-1.0 % gelatin peptide to pudding was capable of significantly (P< 0.05) slowing down the decline in pH and sensory scores of the pudding and significantly inhibiting colony growth. It could prolong its storage life by five days at 4 °C and three days at 25 °C.

2.
Int J Biol Macromol ; 266(Pt 1): 131081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552691

RESUMO

This study prepared and characterized sodium alginate and carrageenan (SAC) composite films incorporated with peanut shell flavonoids (PSFs). PSFs compound identification research was implemented. The physicochemical features of PSFs-SAC composite films and their ability to preserve chilled pork in a 4 °C refrigerator were determined. PSFs consist of luteolin, eriodictyol, 5,7-dihydroxychromone, and 8 other components. They significantly improved the mechanical properties, barrier properties, thermal stability, and antioxidant properties of SAC composite films (P < 0.05). PSFs were also responsible for increasing the density of the film structure between the sodium alginate and carrageenan molecules. During storage, compared with the control group, the prepared PSFs-SAC composite films did not allow the total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of the chilled pork to increase rapidly. Further, they were able to inhibit lipid oxidation more effectively (P < 0.05). For these reasons, the use of the PSFs-SAC composite films prolonged shelf life of chilled pork from 6 days to the 12 days. Therefore, PSFs-SAC composite films are expected to be used as bioactive substances in food preservation.


Assuntos
Alginatos , Antioxidantes , Arachis , Carragenina , Flavonoides , Conservação de Alimentos , Antioxidantes/química , Antioxidantes/farmacologia , Alginatos/química , Flavonoides/química , Flavonoides/farmacologia , Carragenina/química , Conservação de Alimentos/métodos , Animais , Arachis/química , Suínos , Embalagem de Alimentos/métodos , Carne de Porco/análise , Temperatura Baixa
3.
Sci Total Environ ; 921: 171105, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402975

RESUMO

Compacted clay is employed as the buffer material for landfills, and multiple ions are dissolved in the leachate restricted by the compacted clay layer. The membrane efficiency is an important indicator to assess the barrier properties of the compacted clay layer and is measured through membrane tests. However, most membrane tests are currently conducted with a single solute solution, which does not reflect the mixed solution characteristics of leachates. To assess the membrane efficiency of compacted clay under mixed solution conditions, 13 membrane tests were conducted on a bentonite-amended soil using KCl-NaCl mixed solutions, KCl-CaCl2 mixed solutions, and KCl-AlCl3 mixed solutions with different mixing ratios at a total concentration of 20 mM. Nuclear magnetic resonance (NMR) tests were conducted on the soil specimen after the membrane tests to investigate the micromechanism of the membrane behavior under mixed solution conditions. Results indicate that the membrane efficiency increased with the mixing ratio of Na+ but decreased with the mixing ratio of Ca2+ or Al3+. In the 13 membrane tests, the lowest membrane efficiency was achieved when the specimen was tested with pure AlCl3 solution. The relationship between the membrane efficiency and mixing ratio was also investigated at the microscopic scale. As the ion valence increases, the diffuse double layer thickness is smaller and the proportion of macropores is larger, as verified by NMR tests.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38265901

RESUMO

Cardiac magnetic resonance imaging (CMRI) super-resolution (SR) reconstruction technology can enhance the resolution and quality of CMRI, providing experts with clearer and more accurate information about cardiac structure and function. This technology aids in the rapid and accurate diagnosis of cardiac abnormalities and the development of personalized treatment plans. In the processing of CMRI, existing bicubic degradation-based SR methods often suffer from performance degradation, resulting in blurred SR images. To address the aforementioned problem, we present a parallel alternating iterative optimization for CMRI image blind SR method (PAIBSR). Specifically, we propose a parallel alternating iterative optimization strategy, which employs dynamically corrected blur kernels and dynamically extracted intermediate low-resolution features as prior knowledge for both the blind SR process and the blur kernel correction process. Meanwhile, we propose a blur kernel update module composed of a blur kernel extractor and a low-resolution kernel extractor to correct the blur kernel. Furthermore, we propose an enhanced spatial feature transformation residual block, leveraging the corrected blur kernel as prior knowledge for the blind SR process. Through extensive experiments conducted on synthetic datasets, we have validated the superiority of PAIBSR method. It outperforms state-of-the-art SR methods in terms of performance and produces visually pleasing results.

5.
Bioresour Technol ; 394: 130207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109978

RESUMO

The treatment of coking wastewater with high phenol concentrations has been a challenge for conventional biological treatment technology. In this short communication, phenol-degrading bacteria domesticated by micro and nano bubbles (MNBs) water are used to treat the high- concentration phenol in an MNBs aeration reactor (MNB-AR). The results show that the MNB-AR can greatly improve the removal of phenol and chemical oxygen demand (COD). At a phenol concentration of 1000 mg L-1, the phenol and COD removal rates in the MNB-AR are 55 % and 39 % higher than in the conventional bubble aeration reactor respectively. MNB-AR performs more stably and reaches a higher phenol tolerance under fluctuating high-phenol-concentration loadings. Metagenomic analysis shows that MNBs promote the growth and metabolism of aerobic microorganisms related to phenol degradation, and enhance gene abundance related to carbon metabolism. MNBs aeration combined with microorganisms is an efficient solution for treating coking wastewater.


Assuntos
Benzenossulfonatos , Coque , Microbiota , Águas Residuárias , Fenol/química , Análise da Demanda Biológica de Oxigênio , Fenóis , Redes e Vias Metabólicas , Reatores Biológicos/microbiologia
6.
Nanomicro Lett ; 15(1): 229, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847343

RESUMO

Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to design electrochemically stable vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon.

7.
Food Res Int ; 171: 113074, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330834

RESUMO

This study aimed to evaluate the potential application of Tenebrio Molitor rennet (TMR) in Cheddar cheese production, and to use gas chromatography-ion mobility spectrometry (GC-IMS) to monitor flavor compounds and fingerprints of cheese during ripening. The results indicated that Cheddar cheese prepared from TMR (TF) has fat content significantly lower than that of commercial rennet (CF) (p < 0.05). However, the results of the sensory evaluation showed that there were no statistically significant differences between the two kinds of cheese (p > 0.05). Both cheeses were rich in free amino acids and free fatty acids. Compared to the CF cheese, gamma-aminobutyric acid and Ornithine contents of the TF cheese reached 187 and 749 mg/kg, respectively, during 120 days of ripening. Moreover, GC-IMS provided information on the characteristics of 40 flavor substances (monomers and dimers) in the TF cheese during ripening. Only 30 flavor substances were identified in the CF cheese. The fingerprint of the two kinds of cheese during ripening can be established by GC-IMS and principal component analysis based on the identified flavor compounds. Therefore, TMR has potential application in Cheddar cheese production. GC-IMS might be applied for the quick, accurate and comprehensive monitoring of cheese flavor during ripening.


Assuntos
Queijo , Tenebrio , Animais , Queijo/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica
8.
Entropy (Basel) ; 25(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372209

RESUMO

In order to increase the security and robustness of quantum images, this study combined the quantum DNA codec with quantum Hilbert scrambling to offer an enhanced quantum image encryption technique. Initially, to accomplish pixel-level diffusion and create enough key space for the picture, a quantum DNA codec was created to encode and decode the pixel color information of the quantum image using its special biological properties. Second, we used quantum Hilbert scrambling to muddle the image position data in order to double the encryption effect. In order to enhance the encryption effect, the altered picture was then employed as a key matrix in a quantum XOR operation with the original image. The inverse transformation of the encryption procedure may be used to decrypt the picture since all the quantum operations employed in this research are reversible. The two-dimensional optical image encryption technique presented in this study may significantly strengthen the anti-attack of quantum picture, according to experimental simulation and result analysis. The correlation chart demonstrates that the average information entropy of the RGB three channels is more than 7.999, the average NPCR and UACI are respectively 99.61% and 33.42%, and the peak value of the ciphertext picture histogram is uniform. It offers more security and robustness than earlier algorithms and can withstand statistical analysis and differential assaults.

9.
Meat Sci ; 204: 109262, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356417

RESUMO

This study investigated the effect of chitosan coating with grape peel extracts (CH + GPE) on the physiochemical properties, protein and lipid oxidation, microstructure, and bacterial community diversity of beef during freeze-thaw (F-T) cycles. The results indicated that the CH + GPE groups had lower pH values, total aerobic count, total volatile base nitrogen, and thiobarbituric acid reactive substance values and better protection against color, water holding capacity, and sensory quality after five F-T cycles. The CH + GPE coating effectively inhibited beef microstructure destruction during the F-T cycles. High-throughput sequencing analysis revealed that the CH + GPE coating contributed to a decline in the bacterial diversity of beef and inhibited the growth of pathogenic bacteria. Interestingly, the CH + GPE coating affected the correlation between quality parameters and bacteria in beef. Consequently, the CH + GPE coating can be used as a novel packaging for preventing the loss of frozen meat quality due to temperature fluctuations.


Assuntos
Quitosana , Vitis , Animais , Bovinos , Conservação de Alimentos/métodos , Quitosana/química , Congelamento , Bactérias , Extratos Vegetais/química
10.
Food Chem ; 418: 135958, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36965391

RESUMO

This study aimed at the composition of active packaging film from tapioca starch/pectin (TSP) incorporated with broccoli leaf polyphenols (BLP) was prepared and applied to improve the qualities of the chilled mutton during storage. The results indicated the addition of BLP significantly improved the thickness, density, barrier ability, mechanical properties, water solubility and antioxidant activity of the composite films while inducing decreases in the brightness (p < 0.05), enhancing inter-molecular interactions of TSP + BLP composite films. The WVP, oxygen permeability and elongation at break of the composite film reached the minimum when BLP concentration was 3 % while exhibiting the highest tensile strength and the best performance. This composite film delayed microbial growth and minimized oxidative rancidity during chilled mutton storage, causing the improvement of its quality and extending its shelf life to 12 days. Therefore, TSP + BLP composite films possessed the promise to be applied as bioactive materials in food packaging sectors.


Assuntos
Brassica , Manihot , Polifenóis , Pectinas , Embalagem de Alimentos/métodos , Permeabilidade , Folhas de Planta , Amido
11.
Entropy (Basel) ; 25(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832719

RESUMO

This paper proposes an encryption scheme for high pixel density images. Based on the application of the quantum random walk algorithm, the long short-term memory (LSTM) can effectively solve the problem of low efficiency of the quantum random walk algorithm in generating large-scale pseudorandom matrices, and further improve the statistical properties of the pseudorandom matrices required for encryption. The LSTM is then divided into columns and fed into the LSTM in order for training. Due to the randomness of the input matrix, the LSTM cannot be trained effectively, so the output matrix is predicted to be highly random. The LSTM prediction matrix of the same size as the key matrix is generated based on the pixel density of the image to be encrypted, which can effectively complete the encryption of the image. In the statistical performance test, the proposed encryption scheme achieves an average information entropy of 7.9992, an average number of pixels changed rate (NPCR) of 99.6231%, an average uniform average change intensity (UACI) of 33.6029%, and an average correlation of 0.0032. Finally, various noise simulation tests are also conducted to verify its robustness in real-world applications where common noise and attack interference are encountered.

12.
ACS Omega ; 8(1): 180-189, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643498

RESUMO

We used the phase-field model of the existing Nonsolvent Induced Phase Separation (NIPS) method to add the variable of temperature in simulating the changes in the process of membrane formation. The polyvinylidene fluoride (PVDF) membrane system was applied to examine the influence of coagulation bath temperature change on the skin-sublayer of the membrane structure, thereby elucidating the development process of membrane structure under different conditions and shedding light on the most suitable coagulation bath temperature ranges. It was found that as coagulation bath temperature increased, the number of interface pores in the outer skin layer decreased, but the size increased. As a result, it changed from the crack shape to round-hole shape, thus making the pore structure looser. In the sublayer, the mesh support structure was increased, which enhanced the mechanical strength of the membrane. Relevant experiments also verify the effectiveness of the model.

13.
Comput Methods Programs Biomed ; 229: 107255, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462426

RESUMO

BACKGROUND AND OBJECTIVE: Glioma is the most common primary craniocerebral tumor caused by the cancelation of glial cells in the brain and spinal cord, with a high incidence and cure rate. Magnetic resonance imaging (MRI) is a common technique for detecting and analyzing brain tumors. Due to improper hardware and operation, the obtained brain MRI images are low-resolution, making it difficult to detect and grade gliomas accurately. However, super-resolution reconstruction technology can improve the clarity of MRI images and help experts accurately detect and grade glioma. METHODS: We propose a glioma magnetic resonance image super-resolution reconstruction method based on channel attention generative adversarial network (CGAN). First, we replace the base block of SRGAN with a residual dense block based on the channel attention mechanism. Second, we adopt a relative average discriminator to replace the discriminator in standard GAN. Finally, we add the mean squared error loss to the training, consisting of the mean squared error loss, the L1 norm loss, and the generator's adversarial loss to form the generator loss function. RESULTS: On the Set5, Set14, Urban100, and glioma datasets, compared with the state-of-the-art algorithms, our proposed CGAN method has improved peak signal-to-noise ratio and structural similarity, and the reconstructed glioma images are more precise than other algorithms. CONCLUSION: The experimental results show that our CGAN method has apparent improvements in objective evaluation indicators and subjective visual effects, indicating its effectiveness and superiority.


Assuntos
Glioma , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Glioma/diagnóstico por imagem
14.
Sci Total Environ ; 856(Pt 2): 159196, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198350

RESUMO

Membrane efficiency coefficient of clay is evaluated with considering the effect of fixed charges adsorbed on clay mineral surfaces. By virtue of the concept of chemical potential, the ionic concentration of pore water is calculated. An equation is first proposed to calculate the Donnan osmotic pressure based on the activity of water (H2O), and then a new method is developed to determine the membrane efficiency coefficient, based on the theoretical chemo-osmotic pressure difference. The proposed method is used to calculate the membrane efficiency coefficients of geosynthetic clay liners (GCLs) with different bentonite contents and porosities under different KCl concentrations. The calculated results are compared to those of van't Hoff equation, showing that if skeletal deformation is excluded, the proposed model and van't Hoff equation with average ion concentration difference yield practically the same results; if the deformation is considered, however, van't Hoff equation yields smaller membrane coefficients.


Assuntos
Bentonita , Água , Argila , Osmose , Pressão Osmótica
15.
RSC Adv ; 12(44): 28623-28628, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320543

RESUMO

Seawater electrolysis for scalable hydrogen generation has attracted much attention due to the abundance of seawater in nature. However, it is severely impeded by the chlorine ions in seawater, which can cause corrosion and an undesirable competing reaction at the anode. So it is highly desirable to exploit a highly active, chlorine corrosion resistant and selective OER electrode for seawater splitting. Here, a heterogeneous NiFe-sulfide electrode is proposed to achieve an efficient OER process in alkaline seawater. Considering the 2D lamellar architecture with a rough surface and a considerable amount of micro voids, the dual electronic configuration of sulfur and iron, the strong synergistic effect between Ni and Fe at the atomic level and the interfacial engineering between the NiS/Ni3S2 phase and FeS phase at the nanoscale level, the Ni6Fe2S-0.05 M electrode exhibits predominant catalytic activity with an overpotential of 353 mV to reach 200 mA cm-2, superior long-term stability with 50 h accelerated stability test and higher selectivity toward the OER.

16.
Foods ; 11(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359951

RESUMO

This study revealed changes in the quality, structural and functional collagen properties of cattle rumen smooth muscle (CSM) during F-T cycles. The results showed that thawing loss, pressing loss, ß-galactosidase, ß-glucuronidase activity, ß-sheet content, emulsifying activity index (EAI), emulsion stability index (ESI), surface hydrophobicity, and turbidity of samples were significantly (p < 0.05) increased by 108.12%, 78.33%, 66.57%, 76.60%, 118.63%, 119.57%, 57.37%, 99.14%, and 82.35%, respectively, with increasing F-T cycles. Meanwhile, the shear force, pH, collagen content, α-helix content, thermal denaturation temperature (Tmax), and enthalpy value were significantly (p < 0.05) decreased by 30.88%, 3.19%, 33.23%, 35.92%, 10.34% and 46.51%, respectively. Scanning electron microscopy (SEM) and SDS-PAGE results indicated that F-T cycles induced an increase in disruption of CSM muscle microstructure and degradation of collagen. Thus, repeated F-T cycles promoted collagen degradation and structural disorder in CSM, while reducing the quality of CSM, but improving the functional collagen properties of CSM. These findings provide new data support for the development, processing, and quality control of CSM.

17.
Sci Total Environ ; 816: 151656, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34793798

RESUMO

The warming magnitudes under different shared socioeconomic pathways (SSPs) and the spatial distribution of global land surface air apparent temperature (APT) since the early of the 20 century were systematically analyzed, based on the comparisons among in-situ observations, extended reanalysis, and the CMIP6 model output. The warming of APT by the mid and late 21st century was then projected, as well as under the 1.5 °C and 2.0 °C threshold for global warming. The study reveals: 1) the CMIP6 multi-model ensemble mean (MME) agrees well with the observations in terms of the climatological mean and temporal variations for the global land surface air temperature (SAT) and the calculated APT over the past 100 years. 2) Although the spatial gradient distribution of SAT and APT is quite similar under SSP2-4.5 and SSP5-8.5, the warming trend of global surface APT over land is significantly larger than that of SAT. Population living in low latitudes will be more vulnerable to the enhanced warming of APT. 3) Under the global warming thresholds of 1.5 °C and 2.0 °C, the global mean APT estimated under SSP2-4.5 and SSP5-8.5 is identical, which are 1.9 °C and 2.7 °C, respectively. The projected APT will increase by 3.9 °C under SSP2-4.5 and 6.7 °C under SSP5-8.5 at the end of the 21st century relative to the pre-industrial. This study highlights that the probability and intensity of extreme warm events for land SAT and APT around the globe under SSP5-8.5 will be remarkably higher than SSP2-4.5 in the 21st century, implying the urgent demand of regulating greenhouse gas emissions toward reducing thermal discomfort in the future.


Assuntos
Mudança Climática , Aquecimento Global , Previsões , Temperatura
18.
Animals (Basel) ; 11(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34573675

RESUMO

Crustacean farming is a fast-growing sector and has contributed to improving incomes. Many studies have focused on how to improve crustacean production. Information about crustacean behavior is important in this respect. Manual methods of detecting crustacean behavior are usually infectible, time-consuming, and imprecise. Therefore, automatic growth situation monitoring according to changes in behavior has gained more attention, including acoustic technology, machine vision, and sensors. This article reviews the development of these automatic behavior monitoring methods over the past three decades and summarizes their domains of application, as well as their advantages and disadvantages. Furthermore, the challenges of individual sensitivity and aquaculture environment for future research on the behavior of crustaceans are also highlighted. Studies show that feeding behavior, movement rhythms, and reproduction behavior are the three most important behaviors of crustaceans, and the applications of information technology such as advanced machine vision technology have great significance to accelerate the development of new means and techniques for more effective automatic monitoring. However, the accuracy and intelligence still need to be improved to meet intensive aquaculture requirements. Our purpose is to provide researchers and practitioners with a better understanding of the state of the art of automatic monitoring of crustacean behaviors, pursuant of supporting the implementation of smart crustacean farming applications.

19.
Materials (Basel) ; 14(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064935

RESUMO

This study aimed to investigate the wear failure changes of spindle hook teeth and the reasons for such failure during field work. Spindle samples were obtained from a fixed position of the spindle bar under different field picking area conditions and combined with the spatial distribution characteristics of cotton bolls in Xinjiang. After cutting a spindle sample, a scanning electron microscope and an energy spectrum analyzer were used to characterize the micromorphology and element composition of the hook tooth surface and cross section under different working area conditions. The wear parameters of the hook teeth were then extracted. The results showed that the thickness of the coating on the surface of the hook tooth used in this study was between 66.1 µm and 74.4 µm. The major chemical element was chromium, with a small amount of nickel. During the field picking process, failure of the coating on the surface of the hook teeth initially appeared on the tooth tip and tooth edge, and then spread to the entire hook tooth surface. The wear failure of the hook teeth resulted from abrasive wear, oxidative wear, and fatigue peeling. As the picking area increased, the wear area of the hook teeth increased exponentially, while the wear width increased linearly. When the field picking area reached 533.33 ha, the maximum change rate of the wear area was 2.33 × 103 µm2/ha, and the wear width was 1.84 µm/ha. During field work, the thickness of the coating decreased from the cutting surface to the tooth edge, and the wear rate gradually increased. The wear rate at Position 1 was the slowest, at 0.01 µm/ha, and the wear rate at Position 5 was the fastest, at 0.25 µm/ha.

20.
Comput Methods Programs Biomed ; 208: 106193, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34107373

RESUMO

BACKGROUND AND OBJECTIVE: Recently, the COVID-19 epidemic has become more and more serious around the world, how to improve the image resolution of COVID-CT is a very important task. The network based on progressive upsampling for COVID-CT super-resolution increases the reconstruction error. This paper proposes a progressive back-projection network (PBPN) for COVID-CT super-resolution to solve this problem. METHODS: In this paper, we propose a progressive back-projection network (PBPN) for COVID-CT super-resolution. PBPN is divided into two stages, and each stage consists of back-projection, deep feature extraction and upscaling. We design an up-projection and down-projection residual module to minimize the reconstruction error and construct a residual attention module to extract deep features. In each stage, firstly, PBPN performs back-projection to extract shallow features by two up-projection and down-projection residual modules; then, PBPN extracts deep features from the shallow features by two residual attention modules; finally, PBPN upsamples the deep features through sub-pixel convolution. RESULTS: The proposed method achieves the improvements of about 0.14~0.47 dB/0.0012~0.0060 for × 2 scale factor, 0.02~0.08 dB/0.0024~0.0059 for × 3 scale factor, and 0.08~0.41 dB/ 0.0040~0.0147 for × 4 scale factor than state-of-the-art methods (Bicubic, SRCNN, FSRCNN, VDSR, LapSRN, DRCN and DSRN) in terms of PSNR/SSIM on benchmark datasets. CONCLUSIONS: The proposed mehtod obtains better performance for COVID-CT super-resolution and reconstructs high-quality high-resolution COVID-CT images that contain more details and edges.


Assuntos
COVID-19 , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA