Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202442

RESUMO

Embryonic diapause is a common evolutionary adaptation observed across a wide range of organisms. Artemia is one of the classic animal models for diapause research. The current studies of Artemia diapause mainly focus on the induction and maintenance of the embryonic diapause, with little research on the molecular regulatory mechanism of Artemia embryonic reactivation. The first 5 h after embryonic diapause breaking has been proved to be most important for embryonic reactivation in Artemia. In this work, two high-throughput sequencing methods, ATAC-seq and RNA-seq, were integrated to study the signal regulation process in embryonic reactivation of Artemia at 5 h after diapause breaking. Through the GO and KEGG enrichment analysis of the high-throughput datasets, it was showed that after 5 h of diapause breaking, the metabolism and regulation of Artemia cyst were quite active. Several signal transduction pathways were identified in the embryonic reactivation process, such as G-protein-coupled receptor (GPCR) signaling pathway, cell surface receptor signaling pathway, hormone-mediated signaling pathway, Wnt, Notch, mTOR signaling pathways, etc. It indicates that embryonic reactivation is a complex process regulated by multiple signaling pathways. With the further protein structure analysis and RT-qPCR verification, 11 GPCR genes were identified, in which 5 genes function in the embryonic reactivation stage and the other 6 genes contribute to the diapause stage. The results of this work reveal the signal transduction pathways and GPCRs involved in the embryonic reactivation process of Artemia cysts. These findings offer significant clues for in-depth research on the signal regulatory mechanisms of the embryonic reactivation process and valuable insights into the mechanism of animal embryonic diapause.


Assuntos
Artemia , Diapausa , Transdução de Sinais , Animais , Artemia/genética , Artemia/embriologia , Transdução de Sinais/genética , Diapausa/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq/métodos , Embrião não Mamífero/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Desenvolvimento Embrionário/genética
2.
Curr Issues Mol Biol ; 46(7): 7353-7372, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057077

RESUMO

Eriocheir sinensis is an economically important aquatic animal. Its regulatory mechanisms underlying many biological processes are still vague due to the lack of systematic analysis tools. The protein-protein interaction network (PIN) is an important tool for the systematic analysis of regulatory mechanisms. In this work, a novel machine learning method, DGO-SVM, was applied to predict the protein-protein interaction (PPI) in E. sinensis, and its PIN was reconstructed. With the domain, biological process, molecular functions and subcellular locations of proteins as the features, DGO-SVM showed excellent performance in Bombyx mori, humans and five aquatic crustaceans, with 92-96% accuracy. With DGO-SVM, the PIN of E. sinensis was reconstructed, containing 14,703 proteins and 7,243,597 interactions, in which 35,604 interactions were associated with 566 novel proteins mainly involved in the response to exogenous stimuli, cellular macromolecular metabolism and regulation. The DGO-SVM demonstrated that the biological process, molecular functions and subcellular locations of proteins are significant factors for the precise prediction of PPIs. We reconstructed the largest PIN for E. sinensis, which provides a systematic tool for the regulatory mechanism analysis. Furthermore, the novel-protein-related PPIs in the PIN may provide important clues for the mechanism analysis of the underlying specific physiological processes in E. sinensis.

3.
Drug Resist Updat ; 76: 101115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002266

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Recombinação Homóloga , Macrófagos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral/imunologia
4.
Cell Rep Med ; 5(6): 101590, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843844

RESUMO

Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.


Assuntos
Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoconjugados/farmacologia , Imunoconjugados/química , Feminino , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia
5.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674345

RESUMO

Integrated networks have become a new interest in genome-scale network research due to their ability to comprehensively reflect and analyze the molecular processes in cells. Currently, none of the integrated networks have been reported for higher organisms. Eriocheir sinensis is a typical aquatic animal that grows through ecdysis. Ecdysone has been identified to be a crucial regulator of ecdysis, but the influence factors and regulatory mechanisms of ecdysone synthesis in E. sinensis are still unclear. In this work, the genome-scale metabolic network and protein-protein interaction network of E. sinensis were integrated to reconstruct a metabolic-protein interaction integrated network (MPIN). The MPIN was used to analyze the influence factors of ecdysone synthesis through flux variation analysis. In total, 236 integrated reactions (IRs) were found to influence the ecdysone synthesis of which 16 IRs had a significant impact. These IRs constitute three ecdysone synthesis routes. It is found that there might be alternative pathways to obtain cholesterol for ecdysone synthesis in E. sinensis instead of absorbing it directly from the feeds. The MPIN reconstructed in this work is the first integrated network for higher organisms. The analysis based on the MPIN supplies important information for the mechanism analysis of ecdysone synthesis in E. sinensis.


Assuntos
Braquiúros , Ecdisona , Mapas de Interação de Proteínas , Ecdisona/metabolismo , Animais , Braquiúros/metabolismo , Braquiúros/genética , Redes e Vias Metabólicas
6.
Curr Issues Mol Biol ; 46(4): 3676-3693, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38666959

RESUMO

Artemia is a widely distributed small aquatic crustacean, renowned for its ability to enter a state of embryonic diapause. The embryonic diapause termination (EDT) is closely linked to environmental cues, but the precise underlying mechanisms remain elusive. In this study, ATAC-seq and RNA-seq sequencing techniques were employed to explore the gene expression profiles in Artemia cysts 30 min after EDT. These profiles were compared with those during diapause and 5 h after EDT. The regulatory mechanisms governing the EDT process were analyzed through Gene Ontology (GO) enrichment analysis of differentially expressed genes. Furthermore, the active G-protein-coupled receptors (GPCRs) were identified through structural analysis. The results unveiled that the signaling transduction during EDT primarily hinges on GPCRs and the cell surface receptor signaling pathway, but distinct genes are involved across different stages. Hormone-mediated signaling pathways and the tachykinin receptor signaling pathway exhibited heightened activity in the '0-30 min' group, whereas the Wnt signaling pathway manifested its function solely in the '30 min-5 h' group. These results imply a complete divergence in the mechanisms of signal regulation during these two stages. Moreover, through structural analysis, five GPCRs operating at different stages of EDT were identified. These findings provide valuable insights into the signal regulation mechanisms governing Artemia diapause.

7.
Cell Oncol (Dordr) ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847338

RESUMO

PURPOSE: Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. METHODS: We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. RESULTS: High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into "hot", "intermediate" and "cold" groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. CONCLUSION: Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.

8.
Angew Chem Int Ed Engl ; 62(36): e202308174, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37438983

RESUMO

Glycoengineering has provided powerful tools to construct site-specific antibody conjugates. However, only small-molecule payloads can be directly transferred to native or engineered antibodies using existing glycoengineering strategies. Herein, we demonstrate that reducing the complexity of crystallizable fragment (Fc) glycans could dramatically boost the chemoenzymatic modification of immunoglobulin G (IgG) via an engineered fucosyltransferase. In this platform, antibodies with Fc glycans engineered to a simple N-acetyllactosamine (LacNAc) disaccharide are successfully conjugated to biomacromolecules, such as oligonucleotides and nanobodies, in a single step within hours. Accordingly, we synthesized an antibody-conjugate-based anti-human epidermal growth factor receptor 2 (HER2)/ cluster of differentiation 3 (CD3) bispecific antibody and used it to selectively destroy patient-derived cancer organoids by reactivating endogenous T lymphocyte cells (T cells) inside the organoid. Our results highlight that this platform is a general approach to construct antibody-biomacromolecule conjugates with translational values.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Glicosilação , Imunoglobulina G/metabolismo , Polissacarídeos/metabolismo , Imunoconjugados/metabolismo , Fragmentos Fc das Imunoglobulinas
9.
Insect Sci ; 30(2): 486-500, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36069276

RESUMO

Insecticides are anthropogenic environmental stressors and also a common stressor for mosquito vectors. However, the use of insecticides is often guided by short-term efficacy, and the sublethal effect on their target or nontarget species has long been ignored. Here, we analyzed how sublethal exposure of the promising vector-control bioinsecticide spinetoram to Aedes aegypti larvae alter adult performance and susceptibility to dengue virus (DENV) infection. We found that the surviving adult mosquitoes were significantly smaller and exhibited weaker blood-feeding capacity than control females, apart from the extended immature development period. In terms of reproductive potential, although the F0 generation produced a similar number of eggs and offspring during the first gonotrophic cycle, the survival rates of the F1 generations were significantly lower as compared to the control group, suggesting transgenerational sublethal effects on the F1 generation. Notably, surviving adult females had higher DENV-2 viral loads than the control group after spinetoram sublethal exposure. Mechanistically, transcriptomic analysis showed that inhibition of oxidative phosphorylation may function in stimulating DENV production in adult Ae. aegypti. In Aag2 cells, significant accumulation of apoptosis, mitochondrial reactive oxygen species production, and DENV-2 replication by spinetoram exposure consistently support our conclusion. Our study highlights the threat of sublethal spinetoram exposure on outbreaks of mosquito-borne viruses.


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Características de História de Vida , Feminino , Animais , Dengue/epidemiologia , Inseticidas/farmacologia , Replicação Viral
10.
Sci Rep ; 12(1): 22373, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572710

RESUMO

Systematic quantification of phosphoprotein within cell signaling networks in solid tissues remains challenging and precise quantification in large scale samples has great potential for biomarker identification and validation. We developed a reverse phase protein array (RPPA) based phosphor-antibody characterization approach by taking advantage of the lysis buffer compatible with alkaline phosphatase (AP) treatment that differs from the conventional RPPA antibody validation procedure and applied it onto fresh frozen (FF) and formalin-fixed and paraffin-embedded tissue (FFPE) to test its applicability. By screening 106 phospho-antibodies using RPPA, we demonstrated that AP treatment could serve as an independent factor to be adopted for rapid phospho-antibody selection. We also showed desirable reproducibility and specificity in clincical specimens indicating its potential for tissue-based phospho-protein profiling. Of further clinical significance, using the same approach, based on melanoma and lung cancer FFPE samples, we showed great interexperimental reproducibility and significant correlation with pathological markers in both tissues generating meaningful data that match clinical features. Our findings set a benchmark of an efficient workflow for phospho-antibody characterization that is compatible with high-plex clinical proteomics in precison oncology.


Assuntos
Neoplasias Pulmonares , Análise Serial de Proteínas , Humanos , Análise Serial de Proteínas/métodos , Reprodutibilidade dos Testes , Fixação de Tecidos/métodos , Formaldeído , Neoplasias Pulmonares/diagnóstico , Anticorpos , Inclusão em Parafina/métodos
11.
Front Bioeng Biotechnol ; 9: 757378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778231

RESUMO

Advances in immunotherapy have made an unprecedented leap in treating colorectal cancer (CRC). However, more effective therapeutic regimes need a deeper understanding of molecular architectures for precise patient stratification and therapeutic improvement. We profiled patients receiving neoadjuvant chemotherapy alone or in combination with immunotherapy (PD-1 checkpoint inhibitor) using Digital Spatial Profiler (DSP), a high-plex spatial proteogenomic technology. Compartmentalization-based high-plex profiling of both proteins and mRNAs revealed pronounced immune infiltration at tumor regions associated with immunotherapy treatment. The protein and the corresponding mRNA levels within the same selected regions of those patient samples correlate, indicating an overall concordance between the transcriptional and translational levels. An elevated expression of PD-L1 at both protein and the mRNA levels was discovered in the tumor compartment of immunotherapy-treated patients compared with chemo-treated patients, indicating potential prognostic biomarkers are explorable in a spatial manner at the local tumor microenvironment (TME). An elevated expression of PD-L1 was verified by immunohistochemistry. Other compartment-specific biomarkers were also differentially expressed between the tumor and stromal regions, indicating a dynamic interplay that can potentiate novel biomarker discovery from the TME perspectives. Simultaneously, a high-plex spatial profiling of protein and mRNA in the tumor microenvironment of colorectal cancer was performed.

12.
Carbohydr Polym ; 205: 192-202, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446095

RESUMO

Polysaccharides purified from natural herbs possess immunoregulatory functions, while the efficacy of natural polysaccharides on cancer treatment remains unreliable, likely due to their low prescribed doses and fast clearances in clinical settings. In this study, gold nanocomposites containing Ganoderma lucidum polysaccharide (GLP-Au) efficiently induced dendritic cell (DC) activation, evident by the increase of CD80/CD86/CD40/MHCII, decrease of phagocytic ability and acid phosphatase activity, and increased cytokine transcription. GLP-Au significantly promoted the proliferation of CD4+ and CD8+ T cells in splenocytes. DC/T cell co-culture study proved that GLP-Au activation on DC directly resulted in T cell proliferation. GLP-Au exhibited strong inhibitory effects on 4T1 tumor growth and pulmonary metastasis when combined with doxorubicin. GLP-Au recovered body weight loss by doxorubicin and increased the percentage of CD4+/CD44+ memory T cells. This work suggests that polysaccharides from natural herbs can be incorporated into nanocomposites with immunoregulatory characteristics for enhanced efficacy on tumor therapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/terapia , Imunoterapia/métodos , Nanocompostos/química , Polissacarídeos/uso terapêutico , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Combinação de Medicamentos , Ouro/química , Camundongos , Metástase Neoplásica/prevenção & controle , Polissacarídeos/química , Polissacarídeos/farmacologia , Reishi/química , Distribuição Tecidual
13.
Anticancer Drugs ; 29(8): 736-747, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29912010

RESUMO

Cyclosporin A (CsA) is a calcium antagonist and can enhance the efficacy of some protein drugs, but its mechanism remains unknown. In this study, MAP30, a ribosome-inactivating protein reported to have apoptotic effects on cancer cells, was fused with S3, an epidermal growth factor receptor (EGFR)-targeting peptide. In addition, CsA was used to investigate whether it can further promote the apoptotic effects of S3 fused MAP30 (MAP30-S3). Our result showed that the internalization of FITC-labeled MAP30-S3 was increased significantly by S3 in HeLa cells. Unexpectedly, MAP30-S3 only showed a minor decrease in the viability of EGFR-overexpressing cancer cells, including HeLa, SMMC-7721, and MGC803 (IC50>5 µmol/l). However, 2 µmol/l CsA significantly increased the cytotoxicity of MAP30-S3, especially for HeLa cells (IC50=40.3 nmol/l). In comparison, CsA did not further decrease the cytotoxicity of MAP30-S3 on MRC-5, an EGFR low-expressing cell line from normal lung tissue, indicating that CsA did not affect the cancer-targeting specificity of MAP30-S3. Our results also showed that CsA further increased the apoptotic activity of MAP30-S3 in HeLa cells. CsA could promote the endosomal escape of FITC-MAP30-S3 with a diffused pattern in the cytoplasm. Five endocytic inhibitors were used to investigate the cellular uptake mechanism of MAP30-S3, and the results showed that the endosomal escape-enhancing effect of CsA on MAP30-S3 may be associated with the clathrin-dependent endocytic pathways. Our study suggested that CsA could be a novel endosomal escape enhancer to potentiate the intracellular release of anticancer protein drugs, resulting in their improved therapeutic efficacy.


Assuntos
Ciclosporina/farmacologia , Endossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Ribossômicas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/genética
14.
Nanotoxicology ; 12(6): 586-601, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29732938

RESUMO

Bismuth is widely used in metallurgy, cosmetic industry, and medical diagnosis and recently, bismuth nanoparticles (NPs) (BiNP) have been made and proved to be excellent CT imaging agents. Previously, we have synthesized bovine serum albumin based BiNP for imaging purpose but we found a temporary kidney injury by BiNP. Due to the reported adverse events of bismuth on human health, we extended our studies on the mechanisms for BiNP induced nephrotoxicity. Blood biochemical analysis indicated the increase in creatinine (CREA) and blood urea nitrogen (BUN), and intraluminal cast formation with cell apoptosis/necrosis was evident in proximal convoluted tubules (PCTs) of mice. BiNP induced acute kidney injury (AKI) was associated with an increase in LC3II, while the autophagic flux indicator p62 remained unchanged. Chloroquine and rapamycin were used to evaluate the role of autophagy in AKI caused by BiNP. Results showed that BiNP induced AKI was further attenuated by rapamycin, while AKI became severe when chloroquine was applied. In vitro studies further proved BiNP induced autophagy in human embryonic kidney cells 293, presented as autophagic vacuole (AV) formation along with increased levels of autophagy-related proteins including LC3II, Beclin1, and Atg12. Specifically, reactive oxygen species (ROS) generated by BiNP could be the major inducer of autophagy, because ROS blockage attenuated autophagy. Autophagy induced by BiNP was primarily regulated by AMPK/mTOR signal pathway and partially regulated by Akt/mTOR. Our study provides fundamental theory to better understand bismuth induced nephrotoxicity for better clinical application of bismuth related compounds.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Autofagia/fisiologia , Bismuto/toxicidade , Rim/efeitos dos fármacos , Nanopartículas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
15.
Toxicol Appl Pharmacol ; 348: 54-66, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678448

RESUMO

Considerable effort has been made to develop nanocarriers for controlled drug delivery over the last decade, while it remains unclear how the strength of adverse drug effect will be altered when a drug is loaded on the nanocarrier. Drug-induced phospholipidosis (DIP) is characterized with excessive accumulation of phospholipids in cells and is common for cationic amphiphilic drugs (CAD). Previously, we have reported that PEGylated graphene oxide (PEG-GO) loaded with several CAD can potentiate DIP. In current study, we extended our study on newly identified phospholipidosis (PLD) inducers that had been identified from the Library of Pharmacologically Active Compounds (LOPAC), to investigate if PEO-GO loaded with these CAD can alter DIP. Twenty-two CAD were respectively loaded on PEG-GO and incubated with RAW264.7, a macrophage cell line. The results showed that when a CAD was loaded on PEG-GO, its strength of PLD induction can be enhanced, unchanged or attenuated. PEG-GO loaded with Ifenprodil exhibited the highest PEG-GO potentiation effect compared to Ifenprodil treatment alone in RAW264.7 cells, and this effect was confirmed in human hepatocellular carcinoma HepG2, another cell line model for PLD induction. Primary hepatocyte culture and spheroids mimicking in vivo conditions were used to further validate nanocarrier potentiation on DIP by Ifenprodil. Stronger phospholipid accumulation was found in PEG-GO/Ifenprodil treated hepatocytes or spheroids than Ifenprodil treatment alone. Therefore, evidences were provided by us that nanocarriers may increase the adverse drug effects and guidance by regulatory agencies need to be drafted for the safe use of nanotechnology in drug delivery.


Assuntos
Portadores de Fármacos/toxicidade , Grafite/toxicidade , Hepatócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Nanopartículas/toxicidade , Fosfolipídeos/metabolismo , Piperidinas/toxicidade , Animais , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Cultura Primária de Células , Células RAW 264.7 , Medição de Risco , Dióxido de Silício/toxicidade , Esferoides Celulares
16.
Biotechnol Appl Biochem ; 64(2): 290-300, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749490

RESUMO

Fermentation of herb Polygonum hydropiper L. (PHL) and cassava pulp (CP) for feed additive production with simultaneous flavonoid dissolution was investigated, and a two-stage response surface methodology (RSM) based on Plackett-Burman factorial design (PB design) was used to optimize the flavonoid dissolution and protein content. Using the screening function of PB design, four different significant factors for the two response variables were acquired: factors A (CP) and B (PHL) for the flavonoid dissolution versus factors G (inoculum size) and H (fermentation time) for protein content. Then, two RSMs were used sequentially to improve the values of the two response variables separately. The mutual corroboration of the experimental results in the present study confirmed the validity of the associated experimental design. The validation experiment showed a flavonoid dissolution rate of 94.00%, and a protein content of 18.20%, gaining an increase in 21.20% and 199.10% over the control, respectively. The present study confirms the feasibility of feed additive production by Saccharomyces cerevisiae with CP and PHL and simultaneous optimization of flavonoid dissolution and protein content using a two-stage RSM.


Assuntos
Fermentação , Flavonoides/química , Aditivos Alimentares/síntese química , Meios de Cultura/química , Etanol/química , Aditivos Alimentares/química , Manihot/química , Manihot/metabolismo , Polygonum/química , Polygonum/metabolismo , Solubilidade
17.
Biotechnol Appl Biochem ; 61(3): 289-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24164318

RESUMO

Continuous ethanol fermentation using polyvinyl alcohol (PVA), immobilized yeast, and sugarcane molasses (22 and 35°Bx) with 8 g/L urea was run in a combined bioreactor system consisting of three-stage tubular bioreactors in series. The effect of the dilution rate (D) at 0.0037, 0.0075, 0.0117, 0.0145, 0.018, and 0.0282 H(-1) on continuous ethanol fermentation was investigated in this study. The results showed that D had a significant effect on fermentation efficiency, sugar-utilized rate, ethanol yield, and ethanol productivity in this designed continuous fermentation system. The D had a linear relationship with residual sugar and ethanol production under certain conditions. The highest fermentation efficiency of 83.26%, ethanol yield of 0.44 g/g, and the lowest residual sugar content of 6.50 g/L were achieved at 0.0037 H(-1) in the fermentation of 22°Bx molasses, indicating that the immobilization of cells using PVA, sugarcane pieces, and cotton towel is feasible and the established continuous system performs well.


Assuntos
Reatores Biológicos/microbiologia , Etanol/metabolismo , Melaço , Saccharomyces cerevisiae/metabolismo , Saccharum/química , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Etanol/química , Saccharomyces cerevisiae/citologia , Saccharum/metabolismo
18.
Circulation ; 124(1): 77-86, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690491

RESUMO

BACKGROUND: The metabolic syndrome (MetS) is a constellation of clinical features that include central obesity, hypertension, atherogenic dyslipidemia, and insulin resistance. However, the concept remains controversial; it has been debated whether MetS represents nothing more than simultaneous co-occurrence of individual risk factors or whether there are common shared pathophysiological mechanisms that link the individual components. METHODS AND RESULTS: To investigate the emergence of metabolic and cardiovascular components during the development of MetS, we identified MetS-predisposed animals (n=35) in a large population of rhesus macaques (Macaca mulatta, 12.7±2.9 years old, n=408), acclimated them to standardized conditions, and monitored the progression of individual component features over 18 months. In 18 MetS animals with recently developed fasting hyperinsulinemia, central obesity, hypertension, and atherogenic dyslipidemia, we found that individual metabolic and cardiovascular components track together during the transition from pre-MetS to onset of MetS; MetS was associated with a 60% impairment of flow-mediated dilation, establishing the mechanistic link with vascular dysfunction. Pioglitazone treatment (3 mg/kg body weight/d for 6 weeks), a peroxisome proliferator-activated receptor γ agonist, reversibly improved atherogenic dyslipidemia and insulin resistance and fully restored flow-mediated dilation with persistent benefits. CONCLUSIONS: Coemergence of metabolic and cardiovascular components during MetS progression and complete normalization of vascular dysfunction with peroxisome proliferator-activated receptor γ agonists suggest shared underlying mechanisms rather than separate processes, arguing for the benefit of early intervention of MetS components. Predictive nonhuman primate (NHP) models of MetS should be highly valuable in mechanistic and translational studies on the pathogenesis of MetS in relation to cardiovascular disease and diabetes mellitus.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Hipoglicemiantes/farmacologia , Síndrome Metabólica/fisiopatologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Dislipidemias/fisiopatologia , Hiperinsulinismo/fisiopatologia , Hipertensão/fisiopatologia , Resistência à Insulina/fisiologia , Macaca mulatta , Obesidade Abdominal/fisiopatologia , Pioglitazona , Fluxo Sanguíneo Regional/fisiologia
19.
Antioxid Redox Signal ; 14(3): 505-17, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20518706

RESUMO

Hypoglycemia is the main complication for patients with type 1 diabetes mellitus receiving intensive insulin therapy. In addition to the obvious deleterious effects of acute hypoglycemia on brain function, recurrent episodes of hypoglycemia (RH) have an even more insidious effect. RH impairs the ability of the brain to detect and initiate an appropriate counterregulatory response (CRR) to restore euglycemia in response to subsequent hypoglycemia. Knowledge of mechanisms involved in hypoglycemia detection and counterregulation has significantly improved over the past 20 years. Glucose sensitive neurons (GSNs) in the ventromedial hypothalamus (VMH) may play a key role in the CRR. VMH nitric oxide (NO) production has recently been shown to be critical for both the CRR and glucose sensing by glucose-inhibited neurons. Interestingly, downstream effects of NO may also contribute to the impaired CRR after RH. In this review, we will discuss current literature regarding the molecular mechanisms by which VMH GSNs sense glucose. Putative roles of GSNs in the detection and initiation of the CRR will then be described. Finally, hypothetical mechanisms by which VMH NO production may both facilitate and subsequently impair the CRR will be discussed.


Assuntos
Hipoglicemia/metabolismo , Hipoglicemia/fisiopatologia , Óxido Nítrico/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Humanos , Insulina/uso terapêutico , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais/fisiologia , Núcleo Hipotalâmico Ventromedial/citologia
20.
Diabetes ; 59(9): 2271-80, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547974

RESUMO

OBJECTIVE: An impaired ability to sense and appropriately respond to insulin-induced hypoglycemia is a common and serious complication faced by insulin-treated diabetic patients. This study tests the hypothesis that insulin acts directly in the brain to regulate critical glucose-sensing neurons in the hypothalamus to mediate the counterregulatory response to hypoglycemia. RESEARCH DESIGN AND METHODS: To delineate insulin actions in the brain, neuron-specific insulin receptor knockout (NIRKO) mice and littermate controls were subjected to graded hypoglycemic (100, 70, 50, and 30 mg/dl) hyperinsulinemic (20 mU/kg/min) clamps and nonhypoglycemic stressors (e.g., restraint, heat). Subsequently, counterregulatory responses, hypothalamic neuronal activation (with transcriptional marker c-fos), and regional brain glucose uptake (via (14)C-2deoxyglucose autoradiography) were measured. Additionally, electrophysiological activity of individual glucose-inhibited neurons and hypothalamic glucose sensing protein expression (GLUTs, glucokinase) were measured. RESULTS: NIRKO mice revealed a glycemia-dependent impairment in the sympathoadrenal response to hypoglycemia and demonstrated markedly reduced (3-fold) hypothalamic c-fos activation in response to hypoglycemia but not other stressors. Glucose-inhibited neurons in the ventromedial hypothalamus of NIRKO mice displayed significantly blunted glucose responsiveness (membrane potential and input resistance responses were blunted 66 and 80%, respectively). Further, hypothalamic expression of the insulin-responsive GLUT 4, but not glucokinase, was reduced by 30% in NIRKO mice while regional brain glucose uptake remained unaltered. CONCLUSIONS: Chronically, insulin acts in the brain to regulate the counterregulatory response to hypoglycemia by directly altering glucose sensing in hypothalamic neurons and shifting the glycemic levels necessary to elicit a normal sympathoadrenal response.


Assuntos
Glicemia/metabolismo , Encéfalo/fisiologia , Hipoglicemia/metabolismo , Hipotálamo/fisiologia , Insulina/fisiologia , Receptor de Insulina/deficiência , Animais , Cruzamentos Genéticos , Regulação da Expressão Gênica , Glucoquinase/genética , Homozigoto , Temperatura Alta , Hipoglicemia/genética , Hipoglicemia/fisiopatologia , Integrases/genética , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ratos , Receptor de Insulina/genética , Restrição Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Psicológico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA