Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2492-2502, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587431

RESUMO

The swim bladder in some teleost fish functions to transfer the sound energy of acoustic stimuli to the inner ears. This study uses the auditory evoked potential tests, micro-computed tomography scanning, reconstruction, and numerical modeling to assess the contribution of the swim bladder to hearing in crucian carp (Carassius carassius). The auditory evoked potential results show that, at the tested frequency range, the audiogram of fish with an intact swim bladder linearly increases, ranging from 100 to 600 Hz. Over this frequency, the sound pressure thresholds have a local lowest value at 800 Hz. The mean auditory threshold of fish with an intact swim bladder is lower than that of fish with a deflated swim bladder by 0.8-20.7 dB. Furthermore, numerical simulations show that the received pressure of the intact swim bladders occurs at a mean peak frequency of 826 ± 13.6 Hz, and no peak response is found in the deflated swim bladders. The increased sensitivity of reception in sound pressure and acceleration are 34.4 dB re 1 µPa and 40.3 dB re 1 m·s-2 at the natural frequency of swim bladder, respectively. Both electrophysiological measurement and numerical simulation results show that the swim bladder can potentially extend hearing bandwidth and further enhance auditory sensitivity in C. carassius.


Assuntos
Carpas , Animais , Bexiga Urinária , Microtomografia por Raio-X , Audição , Testes Auditivos
2.
Biomimetics (Basel) ; 8(4)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622972

RESUMO

Sound reception was investigated in the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) at its most sensitive frequency. The computed tomography scanning, sound speed, and density results were used to develop a three-dimensional numerical model of the porpoise sound-reception system. The acoustic fields showed that sounds can reach the ear complexes from various pathways, with distinct receptivity peaks on the forward, left, and right sides. Reception peaks were identified on the ipsilateral sides of the respective ears and found on the opposite side of the ear complexes. These opposite maxima corresponded to subsidiary hearing pathways in the whole head, especially the lower head, suggesting the complexity of the sound-reception mechanism in the porpoise. The main and subsidiary sound-reception pathways likely render the whole head a spatial receptor. The low-speed and -density mandibular fats, compared to other acoustic structures, are significant energy enhancers for strengthening forward sound reception. Based on the porpoise reception model, a biomimetic receptor was developed to achieve directional reception, and in parallel to the mandibular fats, the silicon material of low speed and density can significantly improve forward reception. This bioinspired and biomimetic model can bridge the gap between animal sonar and artificial sound control systems, which presents potential to be exploited in manmade sonar.

3.
J Acoust Soc Am ; 154(2): 938-947, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581404

RESUMO

Ocean noise negatively influences the recording of odontocete echolocation clicks. In this study, a hybrid model based on the convolutional neural network (CNN) and long short-term memory (LSTM) network-called a hybrid CNN-LSTM model-was proposed to denoise echolocation clicks. To learn the model parameters, the echolocation clicks were partially corrupted by adding ocean noise, and the model was trained to recover the original echolocation clicks. It can be difficult to collect large numbers of echolocation clicks free of ambient sea noise for training networks. Data augmentation and transfer learning were employed to address this problem. Based on Gabor functions, simulated echolocation clicks were generated to pre-train the network models, and the parameters of the networks were then fine-tuned using odontocete echolocation clicks. Finally, the performance of the proposed model was evaluated using synthetic data. The experimental results demonstrated the effectiveness of the proposed model for denoising two typical echolocation clicks-namely, narrowband high-frequency and broadband echolocation clicks. The denoising performance of hybrid models with the different number of convolution and LSTM layers was evaluated. Consequently, hybrid models with one convolutional layer and multiple LSTM layers are recommended, which can be adopted for denoising both types of echolocation clicks.


Assuntos
Ecolocação , Animais , Memória de Curto Prazo , Redes Neurais de Computação , Ruído , Memória de Longo Prazo
4.
J Acoust Soc Am ; 153(6): 3192, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279060

RESUMO

The investigation of the large yellow croaker (Larimichthys crocea) deserves more attention due to its high commercial value as an important aquaculture fish species. This study was initiated by deploying a passive acoustic monitoring device to record the calls from the L. crocea during the spawning process in an aquaculture facility. The subsequent analysis suggested the croakers produced at least two types of calls with considerable energy distributed up to 1000 Hz. The acoustic data and the computed tomography scanning of an adult croaker were used to develop a numerical model to address the directivity of the calls at frequencies up to 1000 Hz. The radiation patterns at all frequencies were assigned with respective weights and then combined to estimate an overall acoustic radiation pattern for both types of the calls. The backward transmission was greater for both types of calls by 1.85 dB on average. The reduction of size by 20% in the swim bladder resulted in a stronger sidelobe in the frontal direction, indicating its influence on call directivity. These results provided information on the directivity of the croaker calls and understanding of fish acoustics.


Assuntos
Perciformes , Animais , Reprodução
5.
J Acoust Soc Am ; 151(6): 3573, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778211

RESUMO

Odontocetes have evolved special acoustic structures in the forehead to modulate echolocation and communication signals into directional beams to facilitate feeding and social behaviors. Whistle directivity was addressed for the Indo-Pacific humpback dolphin (Sousa chinensis) by developing numerical models in the current paper. Directivity was first examined at the fundamental frequency 5 kHz, and simulations were then extended to the harmonics of 10, 15, 20, 25, and 30 kHz. At 5 kHz, the -3 dB beam widths in the vertical and horizontal planes were 149.3° and 119.4°, corresponding to the directivity indexes (DIs) of 4.4 and 5.4 dB, respectively. More importantly, we incorporated directivity of the fundamental frequency and harmonics to produce an overall beam, resulting in -3 dB beam widths of 77.2° and 62.9° and DIs of 8.2 and 9.7 dB in the vertical and horizontal planes, respectively. Harmonics can enhance the directivity of fundamental frequency by 3.8 and 4.3 dB, respectively. These results suggested the transmission system can modulate whistles into directional projection, and harmonics can improve DI.


Assuntos
Golfinhos , Ecolocação , Acústica , Animais , Espectrografia do Som , Vocalização Animal
6.
J Acoust Soc Am ; 150(5): 3288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34852610

RESUMO

Snapping shrimps are pervasive generators of underwater sound in temperate and tropical coastal seas across oceans of the world. Shrimp snaps can act as signals to conspecifics and provide acoustic information to other species and even to humans for habitat monitoring. Despite this, there are few controlled measurements of the acoustic parameters of these abundant acoustic stimuli. Here, the characteristics of snaps produced by 35 individuals of two species, Alpheus heterochaelis and Alpheus angulosus, are examined to evaluate the variability within and between the species. Animals were collected from the wild and the sound pressure and particle acceleration were measured at 0.2, 0.5, and 1 m from individual shrimp in controlled laboratory conditions to address the snap properties at communication-relevant distances. The source and sound exposure levels (at 1 m) were not significantly different between these two species. The frequency spectra were broadband with peak frequencies consistently below 10 kHz. The particle acceleration, the sound component likely detectable by shrimp, was measured across three axes. The directional amplitude variation suggests that the particle motion of snaps could act as a localization cue. The amplitudes of the snap pressure and acceleration decreased with distance, yet the levels remained sufficient for the predicted detection range by nearby conspecifics.


Assuntos
Decápodes , Som , Acústica , Animais , Ecossistema , Humanos , Oceanos e Mares
7.
J Acoust Soc Am ; 150(2): 1243, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34470267

RESUMO

Ocean noise has a negative impact on the acoustic recordings of odontocetes' echolocation clicks. In this study, deep convolutional autoencoders (DCAEs) are presented to denoise the echolocation clicks of the finless porpoise (Neophocaena phocaenoides sunameri). A DCAE consists of an encoder network and a decoder network. The encoder network is composed of convolutional layers and fully connected layers, whereas the decoder network consists of fully connected layers and transposed convolutional layers. The training scheme of the denoising autoencoder was applied to learn the DCAE parameters. In addition, transfer learning was employed to address the difficulty in collecting a large number of echolocation clicks that are free of ambient sea noise. Gabor functions were used to generate simulated clicks to pretrain the DCAEs; subsequently, the parameters of the DCAEs were fine-tuned using the echolocation clicks of the finless porpoise. The experimental results showed that a DCAE pretrained with simulated clicks achieved better denoising results than a DCAE trained only with echolocation clicks. Moreover, deep fully convolutional autoencoders, which are special DCAEs that do not contain fully connected layers, generally achieved better performance than the DCAEs that contain fully connected layers.


Assuntos
Ecolocação , Toninhas , Animais , Aprendizagem , Aprendizado de Máquina , Redes Neurais de Computação
8.
J Acoust Soc Am ; 150(1): 225, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34340515

RESUMO

The sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the short-finned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.


Assuntos
Baleia Comum , Baleias Piloto , Acústica , Animais , Som , Espectrografia do Som
9.
Mar Environ Res ; 165: 105250, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33461106

RESUMO

Anthropogenic noise can cause diverse changes in animals' behaviors, but effects on feeding behaviors are understudied, especially for key invertebrate taxa. With the offshore wind industry expanding, concern exists regarding potential impacts of pile driving noise on squid and other commercially and ecologically vital taxa. We investigated changes in feeding and alarm (defense) behaviors of squid, Doryteuthis pealeii, predating on killifish, Fundulus heteroclitus, during playbacks of pile driving noise recorded from wind farm construction within squids' habitat. Fewer squid captured killifish during noise exposure compared to controls. Squid had more failed predation attempts when noise was started during predation sequences. Alarm responses to noise were similar whether or not squid were hunting killifish, indicating similar vigilance to threat stimuli in these contexts. Additionally, novel hearing measurements on F. heteroclitus confirmed they could detect the noise. These results indicate noise can disrupt feeding behaviors of a key invertebrate species, and will leverage future studies on how noise may disrupt squids' vital ecological interactions.


Assuntos
Decapodiformes , Laboratórios , Animais , Comportamento Alimentar , Ruído/efeitos adversos , Alimentos Marinhos
10.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33127672

RESUMO

To maximize energy transmission from a source through a media, the concept of impedance matching has been established in electrical, acoustic, and optical engineering. However, existing design of acoustic impedance matching, which extends exactly by a quarter wavelength, sets a fundamental limit of narrowband transmission. Here, we report a previously unknown class of bioinspired metagel impedance transformers to overcome this limit. The transformer embeds a two-dimensional metamaterial matrix of steel cylinders into hydrogel. Using experimental data of the biosonar from the Indo-Pacific humpback dolphin, we demonstrate through theoretical analysis that broadband transmission is achieved when the bioinspired acoustic impedance function is introduced. Furthermore, we experimentally show that the metagel device offers efficient implementation in broadband underwater ultrasound detection with the benefit of being soft and tunable. The bioinspired two-dimensional metagel breaks the length-wavelength dependence, which paves a previously unexplored way for designing next-generation broadband impedance matching devices in diverse wave engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA