RESUMO
The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs. Radiotracer studies reveal impaired intestinal absorption of dietary Mn in Slc39a8-IEC KO mice. SLC39A8 is localized to the apical membrane and mediates 54Mn uptake in intestinal organoid monolayer cultures. Unbiased transcriptomic analysis identifies alkaline ceramidase 1 (ACER1), a key enzyme in sphingolipid metabolism, as a potential therapeutic target for SLC39A8-associated IBDs. Importantly, treatment with an ACER1 inhibitor attenuates colitis in Slc39a8-IEC KO mice by remedying barrier dysfunction. Our results highlight the essential roles of SLC39A8 in intestinal Mn absorption and epithelial integrity and offer a therapeutic target for IBD associated with impaired Mn homeostasis.
Assuntos
Ceramidase Alcalina , Proteínas de Transporte de Cátions , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Manganês , Camundongos Knockout , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Manganês/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ceramidase Alcalina/metabolismo , Ceramidase Alcalina/genética , Humanos , Camundongos Endogâmicos C57BL , Homeostase , Masculino , Colite/metabolismo , Colite/genética , Colite/patologia , Absorção Intestinal , Células Epiteliais/metabolismoRESUMO
OBJECTIVE: Individuals with higher intrinsic cardiorespiratory fitness (CRF) experience decreased rates of cardiometabolic disease and mortality, and high CRF is associated with increased utilization of fatty acids (FAs) for energy. Studies suggest a complex relationship between CRF, diet, and sex with health outcomes, but this interaction is understudied. We hypothesized that FA utilization differences by fitness and sex could be detected in the plasma metabolome when rats or humans were fed a high carbohydrate (HC) or high fat (HF) diet. METHODS: Male and female rats selectively bred for low (LCR) and high (HCR) CRF were fed a chow diet or a sucrose-free HF (45 % fat) or HC (10 % fat) diet. Plasma samples were collected at days 0, 3, and 14. Human plasma data was collected from male and female participants who were randomized into a HC or HF diet for 21 days. Samples were analyzed using liquid chromatography-mass spectrometry and regression statistics were used to quantify the effect of diet, CRF, and sex on the lipidome. RESULTS: In rats, the baseline lipidome is more significantly influenced by sex than by CRF, especially as elevated diglycerides, triglycerides, phosphatidylcholines, and lysophosphatidylcholines in males. A dynamic response to diet was observed 3 days after diet, but after 14 days of either diet, the lipidome was modulated by sex with a larger effect size than by diet. Data from the human study also suggests a sex-dependent response to diet with opposite directionality of affect compared to rats, highlighting species-dependent responses to dietary intervention.
Assuntos
Aptidão Cardiorrespiratória , Ratos , Humanos , Masculino , Feminino , Animais , Lipidômica , Dieta Hiperlipídica/efeitos adversos , TriglicerídeosRESUMO
INTRODUCTION: The Global Research Collaboration for Infectious Disease Preparedness (GloPID-R) is a network of funders supporting research on infectious diseases of epidemic/pandemic potential. GloPID-R is establishing regional hubs to strengthen stakeholder engagement particularly among low-income and middle-income countries. The first pilot hub, led from Republic of Korea (South Korea), has been launched in the Asia-Pacific region, a region highly prone to outbreaks of emerging infectious diseases. We present findings of mapping research undertaken in support of the hub's development. METHODS: We analysed five COVID-19 research databases in September 2022 to identify research funders and intermediary funding sources supporting research in infectious diseases in the Asia-Pacific region. This was complemented with an in-depth analysis of the UK Collaborative on Development Research (UKCDR) and GloPID-R COVID-19 Research Project Tracker to assess the alignment of funded projects in the region to the WHO COVID-19 research priorities. RESULTS: We identified 453 funders and funding sources supporting COVID-19 research in the Asia-Pacific Region including public, private and philanthropic organisations and universities. However, these organisations were clustered in few countries in the region. The in-depth analysis of the UKCDR and GloPID-R COVID-19 Research project Tracker found limited research involving Asia-Pacific countries with the 117 funders supporting these projects investing at least US$604m in COVID-19 research in the region. Social Sciences was the dominant theme on which funded projects focused whereas the priority areas with the least number of projects were research on 'animal and environmental health' and 'ethics considerations for research'. CONCLUSION: Our analyses show the diversity of funding sources for research on infectious diseases in the Asia-Pacific region. Engagement between multiple actors in the health research system is likely to promote enhanced coordination for greater research impact. GloPID-R's Asia-Pacific regional hub aims to support activities for the enhancement of preparedness for outbreaks of emerging infectious diseases in the region.
Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Doenças Transmissíveis , Animais , Humanos , Ásia , República da CoreiaRESUMO
BACKGROUND: Multiple studies have reported brain lipidomic abnormalities in Alzheimer's disease (AD) that affect glycerophospholipids, sphingolipids, and fatty acids. However, there is no consensus regarding the nature of these abnormalities, and it is unclear if they relate to disease progression. OBJECTIVE: Monogalactosyl diglycerides (MGDGs) are a class of lipids which have been recently detected in the human brain. We sought to measure their levels in postmortem human brain and determine if these levels correlate with the progression of the AD-related traits. METHODS: We measured MGDGs by ultrahigh performance liquid chromatography tandem mass spectrometry in postmortem dorsolateral prefrontal cortex gray matter and subcortical corona radiata white matter samples derived from three cohorts of participants: the Framingham Heart Study, the Boston University Alzheimer's Disease Research Center, and the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (total nâ=â288). RESULTS: We detected 40 molecular species of MGDGs (including diacyl and alkyl/acyl compounds) and found that the levels of 29 of them, as well as total MGDG levels, are positively associated with AD-related traits including pathologically confirmed AD diagnosis, clinical dementia rating, Braak and Braak stage, neuritic plaque score, phospho-Tau AT8 immunostaining density, levels of phospho-Tau396 and levels of Aß40. Increased MGDG levels were present in both gray and white matter, indicating that they are widespread and likely associated with myelin-producing oligodendrocytes-the principal cell type of white matter. CONCLUSIONS: Our data implicate the MGDG metabolic defect as a central correlate of clinical and pathological progression in AD.
Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/patologia , Substância Branca/patologia , Diglicerídeos/metabolismo , Encéfalo/patologia , Envelhecimento/patologia , Substância Cinzenta/patologia , Progressão da DoençaRESUMO
OBJECTIVE: The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS: Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS: The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION: Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/etiologia , Ácidos Graxos não Esterificados , Feminino , Humanos , Lipidômica , Lisofosfatidilcolinas , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas , Estudos RetrospectivosRESUMO
Multi-tyrosine kinase inhibitors (MTKIs) have thus far had limited success in the treatment of castration-resistant prostate cancer (CRPC). Here, we report a phase I-cleared orally bioavailable MTKI, ESK981, with a novel autophagy inhibitory property that decreased tumor growth in diverse preclinical models of CRPC. The anti-tumor activity of ESK981 was maximized in immunocompetent tumor environments where it upregulated CXCL10 expression through the interferon gamma pathway and promoted functional T cell infiltration, which resulted in enhanced therapeutic response to immune checkpoint blockade. Mechanistically, we identify the lipid kinase PIKfyve as the direct target of ESK981. PIKfyve-knockdown recapitulated ESK981's anti-tumor activity and enhanced the therapeutic benefit of immune checkpoint blockade. Our study reveals that targeting PIKfyve via ESK981 turns tumors from cold into hot through inhibition of autophagy, which may prime the tumor immune microenvironment in advanced prostate cancer patients and be an effective treatment strategy alone or in combination with immunotherapies.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Próstata Resistentes à Castração , Autofagia , Humanos , Imunoterapia/métodos , Masculino , Fosfatidilinositol 3-Quinases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Microambiente TumoralRESUMO
As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8-17 years, BMI percentile 5-85%) and overweight and obese (OVOB, n = 228, aged 8-17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.
Assuntos
Jejum/metabolismo , Comportamento Alimentar , Resistência à Insulina , Metaboloma , Obesidade/metabolismo , Caracteres Sexuais , Adolescente , Glicemia/metabolismo , Criança , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Cinética , Masculino , Obesidade/sangueRESUMO
BACKGROUNDThis study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR.METHODSRetinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry-based lipidomic platform was used to measure serum and tissue lipids.RESULTSIn the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians' sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR.CONCLUSIONThese findings suggest diminished synthesis of complex lipids and impaired mitochondrial ß-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids.TRIAL REGISTRATIONClinicalTrials.gov NCT00340678.FUNDINGThis work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Lipidômica , Retina/metabolismo , Adulto , Negro ou Afro-Americano , Idoso , Arizona , Carnitina/análogos & derivados , Carnitina/metabolismo , Estudos de Casos e Controles , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/etiologia , Diglicerídeos/metabolismo , Progressão da Doença , Ésteres/metabolismo , Feminino , Hispânico ou Latino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , População Branca , Indígena Americano ou Nativo do AlascaRESUMO
OBJECTIVE: Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). Determining the changes in individual lipids and lipid networks across a spectrum of DKD severity may identify lipids that are pathogenic to DKD progression. METHODS: We performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with non-diabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. RESULTS: Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. CONCLUSIONS: In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Anti-Hipertensivos/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Redes e Vias Metabólicas , Camundongos , Sistema Renina-Angiotensina/efeitos dos fármacos , Triglicerídeos/metabolismoRESUMO
African-American (AA) men are more than twice as likely to die of prostate cancer (PCa) than European American (EA) men. Previous in silico analysis revealed enrichment of altered lipid metabolic pathways in pan-cancer AA tumors. Here, we performed global unbiased lipidomics profiling on 48 matched localized PCa and benign adjacent tissues (30 AA, 24 ancestry-verified, and 18 EA, 8 ancestry verified) and quantified 429 lipids belonging to 14 lipid classes. Significant alterations in long chain polyunsaturated lipids were observed between PCa and benign adjacent tissues, low and high Gleason tumors, as well as associated with early biochemical recurrence, both in the entire cohort, and within AA patients. Alterations in cholesteryl esters, and phosphatidyl inositol classes of lipids delineated AA and EA PCa, while the levels of lipids belonging to triglycerides, phosphatidyl glycerol, phosphatidyl choline, phosphatidic acid, and cholesteryl esters distinguished AA and EA PCa patients with biochemical recurrence. These first-in-field results implicate lipid alterations as biological factors for prostate cancer disparities.
RESUMO
RATIONALE AND OBJECTIVE: Despite contribution of dyslipidemia to ischemic stroke, plasma lipidomic correlates of stroke in CKD is not studied. This study is aimed to identify plasma lipid alterations associated with stroke. STUDY DESIGN: Cross sectional. SETTING AND POPULATION: 214 participants of Clinical Phenotyping and Resource Biobank Core (CPROBE). Clinical data and plasma samples at the time of recruitment were obtained and used to generate lipidomic data by liquid chromatography/mass-spectrometry-based untargeted platform. PREDICTORS: Various levels of free fatty acids, acylcarnitines and complex lipids. OUTCOME: Stroke. ANALYTIC APPROACH: includes compound by compound comparison of lipids using t-test adjusted by false discovery rate in patients with and without stroke, and application of logistic regression analysis to identify independent lipid predictors of stroke and to estimate the odds associated with their various levels. RESULTS: Overall, we identified 330 compounds. Enrichment analysis revealed overrepresentation of differentially regulated phosphatidylcholines (PC)s and phosphatidylethanolamines (PE)s were overrepresented in stroke (P<0.001). Abundance of PC38:4, PE36:4, PC34:0, and palmitate were significantly higher, but those of plasmenyl-PE (pPE)38:2, and PE 32:2 was significantly lower in patients with stroke (p≤0.0014). After adjusting, each 1-SD increase in palmitate and PC38:4 was independently associated with 1.84 fold (95% CI: 1.06-3.20, p=0.031) and 1.84 fold (1.11-3.05, p=0.018) higher risk of stroke, respectively. We observed a significant trend toward higher abundance of PCs, PEs, pPEs, and sphingomyelins in stroke (p≤0.046). LIMITATIONS: Small sample size; unclear, if similar changes in the same or opposite direction preceded stroke, as the cross-sectional nature of the observation does not allow determining the effect of time course on lipid alterations. CONCLUSION: Differential regulation of palmitate, PCs, and PEs in patients with CKD and a history of stroke may represent a previously unrecognized risk factor and might be a target of risk stratification and modification.
RESUMO
Major alterations in metabolism occur during pregnancy enabling the mother to provide adequate nutrients to support infant development, affecting birth weight (BW) and potentially long-term risk of obesity and cardiometabolic disease. We classified dynamic changes in the maternal lipidome during pregnancy and identified lipids associated with Fenton BW z-score and the umbilical cord blood (CB) lipidome. Lipidomics was performed on first trimester maternal plasma (M1), delivery maternal plasma (M3), and CB plasma in 106 mother-infant dyads. Shifts in the maternal and CB lipidome were consistent with the selective transport of long-chain polyunsaturated fatty acids (PUFA) as well as lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE) species into CB. Partial correlation networks demonstrated fluctuations in correlations between lipid groups at M1, M3, and CB, signifying differences in lipid metabolism. Using linear models, LysoPC and LysoPE groups in CB were positively associated with BW. M1 PUFA containing triglycerides (TG) and phospholipids were correlated with CB LysoPC and LysoPE species and total CB polyunsaturated TGs. These results indicate that early gestational maternal lipid levels influence the CB lipidome and its relationship with BW, suggesting an opportunity to modulate maternal diet and improve long-term offspring cardiometabolic health.
Assuntos
Peso ao Nascer , Sangue Fetal/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Lipídeos/sangue , Gravidez/sangue , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Estudos ProspectivosRESUMO
In India, more than 72 million people have diabetes. Diabetic retinopathy (DR), a vision-threatening complication of people with diabetes, is an important cause of avoidable blindness. The delay in the detection of DR is due to lack of awareness and shortage of ophthalmologists trained in the management of DR. With this background, in 2015, we initiated a capacity-building program "Certificate Course in Evidence Based Management of Diabetic Retinopathy (CCDR)" with an objective to build the skills and core competencies of the physicians across India in the management of diabetes and DR. The program has completed four cycles and 578 physicians have been trained. The course elicited an excellent response, which reflects the much-felt need for skill improvement in DR diagnosis and management for physicians in India. This model demonstrates an innovative modality to address DR-related avoidable blindness in a resource-restraint country like India.
Assuntos
Retinopatia Diabética/diagnóstico , Medicina Baseada em Evidências/métodos , Conhecimentos, Atitudes e Prática em Saúde , Médicos de Atenção Primária/normas , Retinopatia Diabética/epidemiologia , Humanos , Incidência , Índia/epidemiologia , Fatores de RiscoRESUMO
BACKGROUNDIn this study, we identified the lipidomic predictors of early type 2 diabetic kidney disease (DKD) progression, which are currently undefined.METHODSThis longitudinal study included 92 American Indians with type 2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD progression was defined as at least 40% decline in GFR during follow-up.RESULTSParticipants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio of 43 (interquartile range 11-144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16-C20 acylcarnitines (ACs) (P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-C20 ACs and short-low-double-bond TAGs by categories of albuminuria independently predicted DKD progression. Renal expression of acetyl-CoA carboxylase-encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the tubulointerstitial compartment (r = 0.52, and P < 0.001).CONCLUSIONCollectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial ß-oxidation and enhanced lipogenesis and DKD progression in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression.TRIAL REGISTRATIONClinicalTrials.gov, NCT00340678.FUNDINGNIH R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, and P30DK020572.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/patologia , Indígenas Norte-Americanos , Lipogênese , Adulto , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Oxirredução , PrognósticoRESUMO
PURPOSE: The bromodomain and extraterminal (BET)-containing proteins (BRD2/3/4) are essential epigenetic coregulators for prostate cancer growth. BRD inhibitors have shown promise for treatment of metastatic castration-resistant prostate cancer (mCRPC), and have been shown to function even in the context of resistance to next-generation AR-targeted therapies such as enzalutamide and abiraterone. Their clinical translation, however, has been limited by off-target effects, toxicity, and rapid resistance. EXPERIMENTAL DESIGN: We have developed a series of molecules that target BET bromodomain proteins through their proteasomal degradation, improving efficacy and specificity of standard inhibitors. We tested their efficacy by utilizing prostate cancer cell lines and patient-derived xenografts, as well as several techniques including RNA-sequencing, mass spectroscopic proteomics, and lipidomics. RESULTS: BET degraders function in vitro and in vivo to suppress prostate cancer growth. These drugs preferentially affect AR-positive prostate cancer cells (22Rv1, LNCaP, VCaP) over AR-negative cells (PC3 and DU145), and proteomic and genomic mechanistic studies confirm disruption of oncogenic AR and MYC signaling at lower concentrations than BET inhibitors. We also identified increases in polyunsaturated fatty acids (PUFA) and thioredoxin-interacting protein (TXNIP) as potential pharmacodynamics biomarkers for targeting BET proteins. CONCLUSIONS: Compounds inducing the pharmacologic degradation of BET proteins effectively target the major oncogenic drivers of prostate cancer, and ultimately present a potential advance in the treatment of mCRPC. In particular, our compound dBET-3, is most suited for further clinical development.
Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Metabolômica/métodos , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Proteólise , Proteômica/métodos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. METHODS: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. RESULTS: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. CONCLUSIONS: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.
Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Metaboloma/fisiologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Lipídeos/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Estudos Prospectivos , Síndrome do Desconforto Respiratório/genéticaRESUMO
Technological advances in mass spectrometry-based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.
Assuntos
Nefropatias/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Estatística como Assunto , Big Data , Biomarcadores/análise , Biomarcadores/metabolismo , Processamento Eletrônico de Dados , Humanos , Controle de Qualidade , Fluxo de TrabalhoRESUMO
Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of ß-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of ß-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired ß-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.
Assuntos
Carnitina/sangue , Ácidos Graxos/sangue , Falência Renal Crônica/sangue , Metabolismo dos Lipídeos , Oxirredução , Adulto , Idoso , Idoso de 80 Anos ou mais , Carnitina/análogos & derivados , Carnitina/química , Ácidos Graxos/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de DoençaRESUMO
Lipids are ubiquitous metabolites with diverse functions; abnormalities in lipid metabolism appear to be related to complications from multiple diseases, including type 2 diabetes. Through technological advances, the entire lipidome has been characterized and researchers now need computational approaches to better understand lipid network perturbations in different diseases. Using a mouse model of type 2 diabetes with microvascular complications, we examined lipid levels in plasma and in renal, neural, and retinal tissues to identify shared and distinct lipid abnormalities. We used correlation analysis to construct interaction networks in each tissue, to associate changes in lipids with changes in enzymes of lipid metabolism, and to identify overlap of coregulated lipid subclasses between plasma and each tissue to define subclasses of plasma lipids to use as surrogates of tissue lipid metabolism. Lipid metabolism alterations were mostly tissue specific in the kidney, nerve, and retina; no lipid changes correlated between the plasma and all three tissue types. However, alterations in diacylglycerol and in lipids containing arachidonic acid, an inflammatory mediator, were shared among the tissue types, and the highly saturated cholesterol esters were similarly coregulated between plasma and each tissue type in the diabetic mouse. Our results identified several patterns of altered lipid metabolism that may help to identify pathogenic alterations in different tissues and could be used as biomarkers in future research into diabetic microvascular tissue damage.