Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1390498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694508

RESUMO

Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais
2.
Front Immunol ; 15: 1389971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799440

RESUMO

Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Linfoma , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Imunoterapia Adotiva/métodos , Linfoma/terapia , Linfoma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Terapia Combinada , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602359

RESUMO

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Assuntos
Peixes , Formaldeído , Limite de Detecção , Compostos de Tritil , Formaldeído/análise , Formaldeído/química , Animais , Compostos de Tritil/química , Compostos de Tritil/análise , Gases/química , Gases/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Soluções , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA