Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 69: 101957, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550008

RESUMO

The use of MRI for prostate cancer diagnosis and treatment is increasing rapidly. However, identifying the presence and extent of cancer on MRI remains challenging, leading to high variability in detection even among expert radiologists. Improvement in cancer detection on MRI is essential to reducing this variability and maximizing the clinical utility of MRI. To date, such improvement has been limited by the lack of accurately labeled MRI datasets. Data from patients who underwent radical prostatectomy enables the spatial alignment of digitized histopathology images of the resected prostate with corresponding pre-surgical MRI. This alignment facilitates the delineation of detailed cancer labels on MRI via the projection of cancer from histopathology images onto MRI. We introduce a framework that performs 3D registration of whole-mount histopathology images to pre-surgical MRI in three steps. First, we developed a novel multi-image super-resolution generative adversarial network (miSRGAN), which learns information useful for 3D registration by producing a reconstructed 3D MRI. Second, we trained the network to learn information between histopathology slices to facilitate the application of 3D registration methods. Third, we registered the reconstructed 3D histopathology volumes to the reconstructed 3D MRI, mapping the extent of cancer from histopathology images onto MRI without the need for slice-to-slice correspondence. When compared to interpolation methods, our super-resolution reconstruction resulted in the highest PSNR relative to clinical 3D MRI (32.15 dB vs 30.16 dB for BSpline interpolation). Moreover, the registration of 3D volumes reconstructed via super-resolution for both MRI and histopathology images showed the best alignment of cancer regions when compared to (1) the state-of-the-art RAPSODI approach, (2) volumes that were not reconstructed, or (3) volumes that were reconstructed using nearest neighbor, linear, or BSpline interpolations. The improved 3D alignment of histopathology images and MRI facilitates the projection of accurate cancer labels on MRI, allowing for the development of improved MRI interpretation schemes and machine learning models to automatically detect cancer on MRI.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia
2.
Med Phys ; 47(9): 4177-4188, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564359

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) has great potential to improve prostate cancer diagnosis; however, subtle differences between cancer and confounding conditions render prostate MRI interpretation challenging. The tissue collected from patients who undergo radical prostatectomy provides a unique opportunity to correlate histopathology images of the prostate with preoperative MRI to accurately map the extent of cancer from histopathology images onto MRI. We seek to develop an open-source, easy-to-use platform to align presurgical MRI and histopathology images of resected prostates in patients who underwent radical prostatectomy to create accurate cancer labels on MRI. METHODS: Here, we introduce RAdiology Pathology Spatial Open-Source multi-Dimensional Integration (RAPSODI), the first open-source framework for the registration of radiology and pathology images. RAPSODI relies on three steps. First, it creates a three-dimensional (3D) reconstruction of the histopathology specimen as a digital representation of the tissue before gross sectioning. Second, RAPSODI registers corresponding histopathology and MRI slices. Third, the optimized transforms are applied to the cancer regions outlined on the histopathology images to project those labels onto the preoperative MRI. RESULTS: We tested RAPSODI in a phantom study where we simulated various conditions, for example, tissue shrinkage during fixation. Our experiments showed that RAPSODI can reliably correct multiple artifacts. We also evaluated RAPSODI in 157 patients from three institutions that underwent radical prostatectomy and have very different pathology processing and scanning. RAPSODI was evaluated in 907 corresponding histpathology-MRI slices and achieved a Dice coefficient of 0.97 ± 0.01 for the prostate, a Hausdorff distance of 1.99 ± 0.70 mm for the prostate boundary, a urethra deviation of 3.09 ± 1.45 mm, and a landmark deviation of 2.80 ± 0.59 mm between registered histopathology images and MRI. CONCLUSION: Our robust framework successfully mapped the extent of cancer from histopathology slices onto MRI providing labels from training machine learning methods to detect cancer on MRI.


Assuntos
Neoplasias da Próstata , Radiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Próstata/diagnóstico por imagem , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Glândulas Seminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA