Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275965

RESUMO

Influenza virus infection can cause severe respiratory disease and is estimated to cause millions of illnesses annually. Studies on the contribution of the innate immune response to influenza A virus (IAV) to viral pathogenesis may yield new antiviral strategies. Zebrafish larvae are useful models for studying the innate immune response to pathogens, including IAV, in vivo. Here, we demonstrate how Color-flu, four fluorescent IAV strains originally developed for mice, can be used to study the host response to infection by simultaneously monitoring infected cells, neutrophils, and macrophages in vivo. Using this model, we show how the angiotensin-converting enzyme inhibitor, ramipril, and mitophagy inhibitor, MDIVI-1, improved survival, decreased viral burden, and improved the respiratory burst response to IAV infection. The Color-flu zebrafish larvae model of IAV infection is complementary to other models where the dynamics of infection and the response of innate immune cells can be visualized in a transparent host in vivo.


Assuntos
Vírus da Influenza A , Influenza Humana , Camundongos , Animais , Humanos , Vírus da Influenza A/fisiologia , Peixe-Zebra , Interações Hospedeiro-Patógeno , Imunidade Inata
2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961402

RESUMO

Influenza virus infection can cause severe respiratory disease and is estimated to cause millions of illnesses annually. Studies of the contribution of the innate immune response to influenza A virus (IAV) to viral pathogenesis may yield new antiviral strategies. Zebrafish larvae are useful models to study the innate immune response to pathogens, including IAV, in vivo. Here, we demonstrate how Color-flu, four fluorescent IAV strains originally developed for mice, can be used to study host-virus interactions by simultaneously monitoring virus particles, neutrophils, and macrophages in vivo. Using this model, we show how the angiotensin-converting enzyme inhibitor, ramipril, and mitophagy inhibitor, MDIVI-1, improved survival, decreased viral burden, and improved the respiratory burst response to IAV infection. The Color-flu zebrafish model of IAV infection is complementary to other models as it is the only model where interactions between virus particles and host cells in an intact vertebrate can be visualized in vivo.

3.
Front Immunol ; 12: 636623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025644

RESUMO

The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied in vivo using animal models. In this review, we describe how the zebrafish (Danio rerio) has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with in vivo imaging of transparent embryos and larvae. The innate immune system has an essential role in the initial inflammatory response to viral infection. Focused studies of the innate immune response to viral infection are possible using the zebrafish model as there is a 4-6 week timeframe during development where they have a functional innate immune system dominated by neutrophils and macrophages. During this timeframe, zebrafish lack a functional adaptive immune system, so it is possible to study the innate immune response in isolation. Sequencing of the zebrafish genome has revealed significant genetic conservation with the human genome, and multiple studies have revealed both functional conservation of genes, including those critical to host cell infection and host cell inflammatory response. In addition to studying several fish viruses, zebrafish infection models have been developed for several human viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection models, coupled with the inherent strengths of the zebrafish model, particularly as it relates to our understanding of macrophage and neutrophil biology, offers opportunities for far more intensive studies aimed at understanding conserved host responses to viral infection. In this context, we review aspects relating to the evolution of innate immunity, including the evolution of viral pattern recognition receptors, interferons and interferon receptors, and non-coding RNAs.


Assuntos
Inflamação/imunologia , Viroses/imunologia , Peixe-Zebra/imunologia , Animais , Homeostase , Imunidade Inata , Controle de Infecções
4.
EMBO Rep ; 20(9): e46238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347268

RESUMO

The protein p62/Sequestosome 1 (p62) has been described as a selective autophagy receptor and independently as a platform for pro-inflammatory and other intracellular signaling. How these seemingly disparate functional roles of p62 are coordinated has not been resolved. Here, we show that TAK1, a kinase involved in immune signaling, negatively regulates p62 action in autophagy. TAK1 reduces p62 localization to autophagosomes, dampening the autophagic degradation of both p62 and p62-directed autophagy substrates. TAK1 also relocalizes p62 into dynamic cytoplasmic bodies, a phenomenon that accompanies the stabilization of TAK1 complex components. On the other hand, p62 facilitates the assembly and activation of TAK1 complexes, suggesting a connection between p62's signaling functions and p62 body formation. Thus, TAK1 governs p62 action, switching it from an autophagy receptor to a signaling platform. This ability of TAK1 to disable p62 as an autophagy receptor may allow certain autophagic substrates to accumulate when needed for cellular functions.


Assuntos
Autofagia/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , MAP Quinase Quinase Quinases/genética , Microscopia Confocal , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Sequestossoma-1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA