Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5627-5636, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275195

RESUMO

This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.


Assuntos
Nanoestruturas , Titânio , Teste de Materiais , Titânio/farmacologia , Titânio/química , Nanoestruturas/química , Ligas/farmacologia , Ligas/química
2.
Nano Lett ; 23(14): 6406-6413, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436039

RESUMO

In this work, for the first time 3D Ti-Nb meshes of different composition, i.e., Ti, Ti-1Nb, Ti-5Nb, and Ti-10 Nb, were produced by direct ink writing. This additive manufacturing method allows tuning of the mesh composition by simple blending of pure Ti and Nb powders. The 3D meshes are extremely robust with a high compressive strength, giving potential use in photocatalytic flow-through systems. After successful wireless anodization of the 3D meshes toward Nb-doped TiO2 nanotube (TNT) layers using bipolar electrochemistry, they were employed for the first time for photocatalytic degradation of acetaldehyde in a flow-through reactor built based on ISO standards. Nb-doped TNT layers with low concentrations of Nb show superior photocatalytic performance compared with nondoped TNT layers due to the lower amount of recombination surface centers. High concentrations of Nb lead to an increased number of recombination centers within the TNT layers and reduce the photocatalytic degradation rates.

3.
ACS Appl Mater Interfaces ; 15(14): 18379-18390, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010878

RESUMO

Detection of visible light is a key component in material characterization techniques and often a key component of quality or purity control analyses for health and safety applications. Here in this work, to enable visible light detection at gigahertz frequencies, a planar microwave resonator is integrated with high aspect ratio TiO2 nanotube (TNT) layer-sensitized CdS coating using the atomic layer deposition (ALD) technique. This unique method of visible light detection with microwave-based sensing improves integration of the light detection devices with digital technology. The designed planar microwave resonator sensor was implemented and tested with resonant frequency between 8.2 and 8.4 GHz and a resonant amplitude between -15 and -25 dB, depending on the wavelength of the illuminated light illumination on the nanotubes. The ALD CdS coating sensitized the nanotubes in visible light up to ∼650 nm wavelengths, as characterized by visible spectroscopy. Furthermore, CdS-coated TNT layer integration with the planar resonator sensor allowed for development of a robust microwave sensing platform with improved sensitivity to green and red light (60 and 1300%, respectively) compared to the blank TNT layers. Moreover, the CdS coating of the TNT layer enhanced the sensor's response to light exposure and resulted in shorter recovery times once the light source was removed. Despite having a CdS coating, the sensor was capable of detecting blue and UV light; however, refining the sensitizing layer could potentially enhance its sensitivity to specific wavelengths of light in certain applications.

4.
ChemSusChem ; 16(11): e202300115, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36939153

RESUMO

2-dimensional FeSx nanosheets of different sizes are synthesized by applying different numbers of atomic layer deposition (ALD) cycles on TiO2 nanotube layers and graphite sheets as supporting materials and used as an electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical results confirm electrocatalytic activity in alkaline media with outstanding long-term stability (>65 h) and enhanced catalytic activity, reflected by a notable drop in the initial HER overpotential value (up to 26 %). By using a range of characterization techniques, the origin of the enhanced catalytic activity was found to be caused by the synergistic interplay between in situ morphological and compositional changes in the 2D FeSx nanosheets during HER. Under the application of a cathodic potential in alkaline media, the as-synthesized 2D FeSx nanosheets transformed into iron oxyhydroxide-iron oxysulfide core-shell nanoparticles, which exhibited a higher active catalytic surface and newly created Fe-based HER catalytic sites.


Assuntos
Grafite , Nanopartículas , Catálise , Eletrodos , Hidrogênio
5.
Aquat Toxicol ; 256: 106419, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36807021

RESUMO

Recently, more accessible transcriptomic approaches have provided a new and deeper understanding of environmental toxicity. The present study focuses on the transcriptomic profiles of green microalgae Chlamydomonas reinhardtii exposed to new industrially promising material, TiO2 nanotubes (NTs), as an example of a widely used one-dimensional nanomaterial. The first algal in vitro assay included 2.5 and 7.5 mg/L TiO2 NTs, resulting in a dose-dependent negative effect on biological endpoints. At a working concentration of 7.5 mg/L, RNA-sequencing showed a mainly negative effect on the cells. In summary, the results indicated metabolic disruption, such as ATP loss, damage to mitochondria and chloroplasts, loss of solutes due to permeated membranes, and cell wall damage. Moreover, apoptosis-induced transcripts were detected. Interestingly, reactivation of transposons was observed. In signalling and transcription pathways, including chromatin remodelling and locking, the annotated genes were downregulated.


Assuntos
Chlamydomonas reinhardtii , Nanotubos , Poluentes Químicos da Água , Transcriptoma , Poluentes Químicos da Água/toxicidade
6.
Small ; 18(36): e2106612, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35122470

RESUMO

Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.


Assuntos
Biofilmes , Escherichia coli , Robótica , Titânio , Catálise , Humanos , Titânio/farmacologia , Ureia/farmacologia , Urease/farmacologia
7.
Nano Lett ; 21(20): 8701-8706, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34609883

RESUMO

In this work, large 3D Ti meshes fabricated by direct ink writing were wirelessly anodized for the first time to prepare highly photocatalytically active TiO2 nanotube (TNT) layers. The use of bipolar electrochemistry enabled the fabrication of TNT layers within the 3D Ti meshes without the establishment of an electrical contact between Ti meshes and the potentiostat, confirming its unique ability and advantage for the synthesis of anodic structures on metallic substrates with a complex geometry. TNT layers with nanotube diameters of up to 110 nm and thicknesses of up to 3.3 µm were formed. The TNT-layer-modified 3D Ti meshes showed a superior performance for the photocatalytic degradation of methylene blue in comparison to TiO2-nanoparticle-decorated and nonanodized Ti meshes (with a thermal oxide layer), resulting in multiple increases in the dye degradation rate. The results presented here open new horizons for the employment of anodized 3D Ti meshes in various flow-through (photo)catalytic reactors.

8.
ACS Appl Mater Interfaces ; 12(29): 33386-33396, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589393

RESUMO

The continuous emission of nitrous oxides contributes to the overall air pollution and deterioration of air quality. In particular, an effective NO2 sensor capable of low concentration detection for continuous monitoring is demanded for safety, health, and wellbeing. The sensing performance of a metal oxide-based sensor is predominantly influenced by the availability of surface area for O2 adsorption and desorption, efficient charge transport, and size or thickness of the sensing layer. In this study, we utilized anodic one-dimensional (1D) TiO2 nanotube layers of 5 µm thick which offer large surface area and unidirectional electron transport pathway as a platform to accommodate thin SnO2 coatings as a sensing layer. Conformal and homogeneous SnO2 coatings across the entire inner and outer TiO2 nanotubes were achieved by atomic layer deposition with a controlled thickness of 4, 8, and 16 nm. The SnO2-coated TiO2 nanotube layers attained a higher sensing response than a reference Figaro SnO2 sensor. Specifically, the 8 nm SnO2-coated TiO2 nanotube layer has recorded up to ten-fold enhancement in response as compared to the blank nanotubes for the detection of 1 ppm NO2 at an operating temperature of 300 °C with 0.5 V applied bias. This is attributed to the SnO2/TiO2 heterojunction effect and controlled SnO2 thickness within the range of the Debye length. We demonstrated in this work, a tailored large surface area platform based on 1D nanotubes with thin active coatings as an efficient approach for sensing applications and beyond.

9.
Nanomaterials (Basel) ; 10(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429573

RESUMO

TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm-2) has been obtained after 200 cycles even at very fast kinetics (3C).

10.
J Hazard Mater ; 388: 122054, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954312

RESUMO

The present study reports on a comprehensive investigation of mechanisms of in vitro cytotoxicity of high aspect ratio (HAR) bundles formed from anodic TiO2 nanotube (TNT) layers. Comparative cytotoxicity studies were performed using two types of HAR TNTs (diameter of ∼110 nm), differing in initial thickness of the nanotubular layer (∼35 µm for TNTs-1 vs. ∼10 µm for TNTs-2). Using two types of epithelial cell lines (MDA-MB-231, HEK-293), it was found that nanotoxicity is highly cell-type dependent and plausibly associates with higher membrane fluidity and decreased rigidity of cancer cells enabling penetration of TNTs to the cell membrane towards disruption of membrane integrity and reorganization of cytoskeletal network. Upon penetration, TNTs dysregulated redox homeostasis followed by DNA fragmentation and apoptotic/necrotic cell death. Both TNTs exhibited haemolytic activity and rapidly activated polarization of RAW 264.7 macrophages. Throughout the whole study, TNTs-2 possessing a lower aspect ratio manifested significantly higher cytotoxic effects. Taken together, this is the first report comprehensively investigating the mechanisms underlying the nanotoxicity of bundles formed from self-organised 1-D anodic TNT layers. Except for description of nanotoxicity of industrially-interesting nanomaterials, the delineation of the nanotoxicity paradigm in cancer cells could serve as solid basis for future efforts in rational engineering of TNTs towards selective anticancer nanomedicine.


Assuntos
Nanotubos/toxicidade , Titânio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , Eletrodos , Humanos , Peroxidação de Lipídeos , Camundongos , Necrose/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
11.
ACS Appl Bio Mater ; 3(9): 6447-6456, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021776

RESUMO

The present work exploits Ti sheets and TiO2 nanotube (TNT) layers and their surface modifications for the proliferation of different cells. Ti sheets with a native oxide layer, Ti sheets with a crystalline thermal oxide layer, and two kinds of TNT layers (prepared via electrochemical anodization) with a defined inner diameter of 12 and 15 nm were used as substrates. A part of the Ti sheets and the TNT layers was additionally coated by thin TiO2 coatings using atomic layer deposition (ALD). An increase in cell growth of WI-38 fibroblasts (>50%), MG-63 osteoblasts (>30%), and SH-SY5Y neuroblasts (>30%) was observed for all materials coated by five cycles ALD compared to their uncoated counterparts. The additional ALD TiO2 coatings changed the surface composition of all materials but preserved their original structure and protected them from unwanted crystallization and shape changes. The presented approach of mild surface modification by ALD has a significant effect on the materials' biocompatibility and is promising toward application in implant materials.

12.
RSC Adv ; 10(37): 22137-22145, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35516600

RESUMO

In this study, crystallization of amorphous TiO2 nanotube (TNT) layers upon optimized laser annealing is shown. The resulting anatase TNT layers do not show any signs of deformation or melting. The crystallinity of the laser annealed TNT layers was investigated using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The study of the (photo-)electrochemical properties showed that the laser annealed TNT layers were more defective than conventional TNT layers annealed in a muffle oven at 400 °C, resulting in a higher charge recombination rate and lower photocurrent response. However, a lower overpotential for hydrogen evolution reaction was observed for the laser annealed TNT layer compared to the oven annealed TNT layer.

13.
Nanoscale ; 11(48): 23126-23131, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793615

RESUMO

One-dimensional TiO2 nanotube layers with different dimensions were homogeneously decorated with 2D MoS2 nanosheets via atomic layer deposition and employed for liquid and gas phase photocatalysis. The 2D MoS2 nanosheets revealed a high amount of exposed active edge sites and strongly enhanced the photocatalytic performance of TiO2 nanotube layers.

14.
ACS Omega ; 4(7): 12156-12166, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460330

RESUMO

This work reports highly selective phosphopeptide enrichment using amorphous TiO2 nanotubes (TiO2NTs) and the same material decorated with superparamagnetic Fe3O4 nanoparticles (TiO2NTs@Fe3O4NPs). TiO2NTs and TiO2NTs@Fe3O4NPs materials were applied for phosphopeptide enrichment both from a simple peptide mixture (tryptic digest of bovine serum albumin and α-casein) and from a complex peptide mixture (tryptic digest of Jurkat T cell lysate). The obtained enrichment efficiency and selectivity for phosphopeptides of TiO2NTs and TiO2NTs@Fe3O4NPs were increased to 28.7 and 25.3%, respectively, as compared to those of the well-established TiO2 microspheres. The enrichment protocol was extended for a second elution step facilitating the identification of additional phosphopeptides. It further turned out that both types of amorphous TiO2 nanotubes provide qualitatively new physicochemical features that are clearly advantageous for highly selective phosphopeptide enrichment. This has been confirmed experimentally resulting in substantial reduction of non-phosphorylated peptides in the enriched samples. In addition, TiO2NTs@Fe3O4NPs combine high selectivity and ease of handling due to the superparamagnetic character of the material. The presented materials and performances are further promising for applications toward a whole range of other types of biomolecules to be treated in a similar fashion.

15.
ChemElectroChem ; 6(2): 336-341, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31032171

RESUMO

Herein, the synthesis of BiOCl nanoplatelets of various dimensions is demonstrated. These materials were prepared by anodic oxidation of Bi ingots in diluted HCl under dielectric breakdown conditions, triggered by a sufficiently high anodic field. Additionally, it is shown that the use of several other common diluted acids (HNO3, H2SO4, lactic acid) resulted in the formation of various different nanostructures. The addition of NH4F to the acidic electrolytes accelerated the growth rate resulting in bismuth-based nanostructures with comparably smaller dimensions and an enormous volume expansion observed during the growth. On the other hand, the addition of lactic acid to the acidic electrolytes decelerated the oxide growth rate. The resulting nanostructures were characterized using SEM, XRD and TEM. BiOCl nanoplatelets received by anodization in 1 M HCl were successfully employed for the photocatalytic decomposition of methylene blue dye and showed a superior performance compared to commercially available BiOCl powder with a similar crystalline structure, confirming its potential as a visible light photocatalyst.

16.
Front Chem ; 7: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775363

RESUMO

The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.

17.
ACS Appl Mater Interfaces ; 9(34): 28233-28242, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28787115

RESUMO

In this work, a high surface area interface, based on anodic one-dimensional (1D) TiO2 nanotubes homogeneously decorated by Fe3O4 nanoparticles (TiO2NTs@Fe3O4NPs) is reported for the first time for an unprecedented purification of His-tagged recombinant proteins. Excellent purification results were achieved from the model protein mixture, as well as from the whole cell lysate (with His-tagged ubiquitin). Compared to a conventional immobilized-metal affinity chromatography (IMAC) system, specific isolation of selected His-tagged proteins on behalf of other proteins was significantly enhanced on TiO2NTs@Fe3O4NPs interface under optimized binding and elution conditions. The combination of specific isolation properties, magnetic features, biocompatibility, and ease of preparation of this material consisting of two basic metal oxides makes it a suitable candidate for future purification of recombinant proteins in biotechnology. The principally new material bears a large potential to open new pathways for discoveries in nanobiotechnology and nanomedicine.


Assuntos
Nanotubos , Cromatografia de Afinidade , Compostos Férricos , Histidina , Nanopartículas Metálicas , Proteínas Recombinantes , Titânio
18.
ChemistryOpen ; 6(4): 480-483, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28794939

RESUMO

Ideally hexagonally ordered TiO2 nanotube layers were produced through the optimized anodization of Ti substrates. The Ti substrates were firstly covered with a TiN protecting layer prepared through atomic layer deposition (ALD). Pre-texturing of the TiN-protected Ti substrate on an area of 20×20 µm2 was carried out by focused ion beam (FIB) milling, yielding uniform nanoholes with a hexagonal arrangement throughout the TiN layer with three different interpore distances. The subsequent anodic nanotube growth using ethylene-glycol-based electrolyte followed the pre-textured nanoholes, resulting in perfectly ordered nanotube layers (resembling honeycomb porous anodic alumina) without any point defects and with a thickness of approximately 2 µm over the whole area of the pattern.

19.
ACS Omega ; 2(6): 2749-2756, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28691112

RESUMO

The utilization of the anodic TiO2 nanotube layers, with uniform Al2O3 coatings of different thicknesses (prepared by atomic layer deposition, ALD), as the new electrode material for lithium-ion batteries (LIBs), is reported herein. Electrodes with very thin Al2O3 coatings (∼1 nm) show a superior electrochemical performance for use in LIBs compared to that of the uncoated TiO2 nanotube layers. A more than 2 times higher areal capacity is received on these coated TiO2 nanotube layers (∼75 vs 200 µAh/cm2) as well as higher rate capability and coulombic efficiency of the charging and discharging reactions. Reasons for this can be attributed to an increased mechanical stability of the TiO2 nanotube layers upon Al2O3 coating, as well as to an enhanced diffusion of the Li+ ions within the coated nanotube layers. In contrast, thicker ALD Al2O3 coatings result in a blocking of the electrode surface and therefore an areal capacity decrease.

20.
ChemElectroChem ; 4(3): 495-499, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28392991

RESUMO

Anodic self-organized TiO2 nanotube layers (with different aspect ratios) were electrochemically infilled with CuInSe2 nanocrystals with the aim to prepare heterostructures with a photoelectrochemical response in the visible light. The resulting heterostructure assembly was confirmed by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). High incident photon-to-electron conversion efficiency values exceeding 55% were obtained in the visible-light region. The resulting heterostructures show promise as a candidate for solid-state solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA