Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zebrafish ; 21(4): 275-278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963004

RESUMO

The 4th Italian Zebrafish Meeting took place in Palermo from February 7 to 9, 2024. The primary aim of this meeting was to bring together a diverse group of principal investigators, young researchers, facility managers, commercial vendors, and others to provide an important forum for presentation and discussion of the most innovative and exciting scientific research currently ongoing in Italy using the zebrafish model. Nonetheless, the meeting program has been conceived to allow the dissemination of cutting-edge scientific research across a wide range of topics and to shed light on its future directions, without geographical boundaries. Indeed, people from various parts of the world joined the meeting, and 210 participants presented their latest work in talks and posters. Importantly, the meeting had designated time to foster open scientific exchange and informal networking opportunities among participants of all career stages, thus allowing initiation of new collaborations and strengthening of existing partnerships. The meeting was a tremendous success as testified by the highest participation ever since the first meeting of the series in 2017, coupled with the highly positive satisfaction rating expressed by the attendants. The full program and detailed information about the meeting can be found on the dedicated website at https://itazebrafishmeeting.wixsite.com/izm2024.


Assuntos
Peixe-Zebra , Animais , Itália , Modelos Animais , Sicília
2.
Anal Chem ; 96(8): 3362-3372, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348659

RESUMO

Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Adjuvantes Imunológicos/farmacologia , Glicoproteínas de Membrana , Receptores Imunológicos
3.
BMC Biotechnol ; 24(1): 4, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243234

RESUMO

BACKGROUND: Modern high-throughput technologies enable the processing of a large number of samples simultaneously, while also providing rapid and accurate procedures. In recent years, automated liquid handling workstations have emerged as an established technology for reproducible sample preparation. They offer flexibility, making them suitable for an expanding range of applications. Commonly, such approaches are well-developed for experimental procedures primarily designed for cell-line processing and xenobiotics testing. Conversely, little attention is focused on the application of automated liquid handlers in the analysis of whole organisms, which often involves time-consuming laboratory procedures. RESULTS: Here, we present a fully automated workflow for all steps, from RNA extraction to real-time PCR processing, for gene expression quantification in the ascidian marine model Ciona robusta. For procedure validation, we compared the results obtained with the liquid handler with those of the classical manual procedure. The outcome revealed comparable results, demonstrating a remarkable time saving particularly in the initial steps of sample processing. CONCLUSIONS: This work expands the possible application fields of this technology to whole-body organisms, mitigating issues that can arise from manual procedures. By minimizing errors, avoiding cross-contamination, decreasing hands-on time and streamlining the procedure, it could be employed for large-scale screening investigations.


Assuntos
Perfilação da Expressão Gênica , Manejo de Espécimes , Automação , Reação em Cadeia da Polimerase em Tempo Real , Análise em Microsséries , Manejo de Espécimes/métodos
4.
Front Immunol ; 14: 1217077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600818

RESUMO

Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.


Assuntos
Cordados não Vertebrados , Animais , Lipopolissacarídeos , Proteômica , Zimosan , Imunidade Inata , Citocinas , Anticorpos , Lectinas Tipo C
5.
Mitochondrial DNA B Resour ; 7(11): 2006-2008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451968

RESUMO

The complete nucleotide sequence of the mitochondrial (mt) genome of the demersal zebra seabream Diplodus cervinus (Lowe, 1838) was determined for the first time. The double stranded circular molecule is 16,559 base pairs (bp) in length and encodes for the typical 37 metazoan mitochondrial genes, and 2 non-coding regions (D-loop and L-origin). The gene arrangement of the D. cervinus mt genome follows the usual one for fishes. The nucleotide sequences of the mt protein coding and ribosomal genes of D. cervinus mt genome were aligned with orthologous sequences from representatives of the Sparidae family and phylogenetic relationships were inferred. Maximum likelihood analyses placed D. cervinus as a sister species of Diplodus sargus (Linnaeus, 1758).

6.
iScience ; 25(4): 104054, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345456

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf -/- compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf -/- larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf -/- zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental diseases.

7.
Mitochondrial DNA B Resour ; 6(9): 2581-2583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409152

RESUMO

The white seabream Diplodus sargus (Linnaeus, 1758) is a species of interest for commercial fisheries throughout its range of distribution and it is also reared using aquaculture techniques. Herein, we present the first complete sequence and annotation of the mitochondrial genome of this species. The D. sargus mitogenome is 16,515 base pairs in length and contains 13 protein-coding genes, 2 rRNA, 22 tRNA, and 2 non-coding regions (D-loop and L-origin). The overall nucleotide composition is: 27.3% A, 28.9% C, 26.8% T, and 17.0% G. Maximum likelihood analyses placed D. sargus as a sister species of Diplodus puntazzo. This study provides valuable information for further studying identification methods and evolutionary relationships of Sparidae species.

8.
Environ Pollut ; 287: 117151, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020261

RESUMO

Fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) is counted as an organic manganese (Mn)-derived compound. The toxic effects of Mn (alone and complexed) on dopaminergic (DA) neurotransmission have been investigated in both cellular and animal models. However, the impact of environmentally relevant Mn exposure on DA neurodevelopment is rather poorly understood. In the present study, the MMT dose of 100 µM (about 5 mg Mn/L) caused up-regulation of DA-related genes in association with cell body swelling and increase in the number of DA neurons of the ventral diencephalon subpopulation DC2. Furthermore, our analysis identified significant brain Mn bioaccumulation and enhancement of total dopamine levels in association with locomotor hyperactivity. Although DA levels were restored at adulthood, we observed a deficit in the acquisition and consolidation of memory. Collectively, these findings suggest that developmental exposure to low-level MMT-derived Mn is responsible for the selective alteration of diencephalic DA neurons and with long-lasting effects on fish explorative behaviour in adulthood.


Assuntos
Manganês , Compostos Organometálicos , Animais , Diencéfalo , Neurônios Dopaminérgicos , Manganês/toxicidade , Peixe-Zebra
9.
Front Cell Dev Biol ; 9: 602450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816460

RESUMO

Photoreceptor cells (PRC) are neurons highly specialized for sensing light stimuli and have considerably diversified during evolution. The genetic mechanisms that underlie photoreceptor differentiation and accompanied the progressive increase in complexity and diversification of this sensory cell type are a matter of great interest in the field. A role of the homeodomain transcription factor Onecut (Oc) in photoreceptor cell formation is proposed throughout multicellular organisms. However, knowledge of the identity of the Oc downstream-acting factors that mediate specific tasks in the differentiation of the PRC remains limited. Here, we used transgenic perturbation of the Ciona robusta Oc protein to show its requirement for ciliary PRC differentiation. Then, transcriptome profiling between the trans-activation and trans-repression Oc phenotypes identified differentially expressed genes that are enriched in exocytosis, calcium homeostasis, and neurotransmission. Finally, comparison of RNA-Seq datasets in Ciona and mouse identifies a set of Oc downstream genes conserved between tunicates and vertebrates. The transcription factor Oc emerges as a key regulator of neurotransmission in retinal cell types.

10.
Foods ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802000

RESUMO

The common dentex (Dentex dentex (Linnaeus, 1758)) is an iconic fish in the Mediterranean diet. Due to its commercial and organoleptic importance, this sparid is highly appreciated in European markets and is often subjected to species substitution frauds. Comparative mitogenomics is a suitable approach for identifying new and effective barcode markers. This study aimed to find a molecular tag useful for unequivocally discriminating the sparid species D. dentex. The comparison of the complete mitochondrial DNA (mtDNA) sequences of 16 sparid species allowed us to highlight the potential of the NAD2 gene for direct identification purposes. Common dentex-specific primers were created and successfully evaluated by end-point and real-rime PCR (Polymerase Chain Reaction) for several fish species, achieving amplification only in the D. dentex. The method proposed in this study appears fast, simple, and inexpensive and requires affordable instrumentation. This approach provides unambiguous results for the common dentex authentication without the sequencing step. The presence/absence assay for D. dentex can be executed in a few hours of lab work. Therefore, national authorities responsible for food safety and traceability could apply and make full use of DNA-testing methods for deterring operators from false seafood declarations.

11.
Front Immunol ; 12: 642687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717199

RESUMO

The functional ecology of the gastrointestinal tract impacts host physiology, and its dysregulation is at the center of various diseases. The immune system, and specifically innate immunity, plays a fundamental role in modulating the interface of host and microbes in the gut. While humans remain a primary focus of research in this field, the use of diverse model systems help inform us of the fundamental principles legislating homeostasis in the gut. Invertebrates, which lack vertebrate-style adaptive immunity, can help define conserved features of innate immunity that shape the gut ecosystem. In this context, we previously proposed the use of a marine invertebrate, the protochordate Ciona robusta, as a novel tractable model system for studies of host-microbiome interactions. Significant progress, reviewed herein, has been made to fulfill that vision. We examine and review discoveries from Ciona that include roles for a secreted immune effector interacting with elements of the microbiota, as well as chitin-rich mucus lining the gut epithelium, the gut-associated microbiome of adults, and the establishment of a large catalog of cultured isolates with which juveniles can be colonized. Also discussed is the establishment of methods to rear the animals germ-free, an essential technology for dissecting the symbiotic interactions at play. As the foundation is now set to extend these studies into the future, broadening our comprehension of how host effectors shape the ecology of these microbial communities in ways that establish and maintain homeostasis will require full utilization of "multi-omics" approaches to merge computational sciences, modeling, and experimental biology in hypothesis-driven investigations.


Assuntos
Ciona intestinalis/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/imunologia , Animais , Ciona intestinalis/imunologia , Ecotoxicologia , Imunidade Inata , Imunidade nas Mucosas
12.
Eur J Neurosci ; 53(5): 1367-1377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098676

RESUMO

A growing body of evidence suggests that the biological effects of polyphenols are not restricted to antioxidant activity, but they exert a wide range of modulatory effects on metabolic pathways, cellular signaling and gene expression. In this study, we tested the minimum safe concentration of gallic acid (GA) in 72 hpf zebrafish larvae in order to evaluate the effects on the central nervous system and the behavioral response. We showed that a short exposure (30 min) induces the depletion of the two main excitatory and inhibitory neurotransmitters, Glu and GABA, respectively, in the larval nervous system. The acute impairment of GABAergic-glutamatergic balance was paralleled by an increase of the fosab neuronal activity marker in specific brain areas, such as the forebrain, olfactory bulbs, pallial area, ventral midbrain, tegmentum, and the medulla oblongata ventral area. The neuronal excitation was mirrored by the increased cumulative motor response. The inhibition of the olfactory epithelium with brief cadmium exposition suggests a direct involvement of olfaction in the larvae response to GA. Our results demonstrate that a brief exposure to GA induces motoneuronal hyperexcitability in zebrafish. The behavioral response was probably elicited through the activation of an odorous, or chemical, stimulus. The specificity of the activated neuronal territories suggests the involvement of additional signaling pathways. Although the underlying molecular mechanisms remain to be elucidated, our data support the hypothesis that GA acts as an excitatory molecule, capable of inducing a specific nerve response. These results offer a new vision on potential effects of GA.


Assuntos
Ácido Gálico , Peixe-Zebra , Animais , Ácido Gálico/toxicidade , Larva , Neurônios , Prosencéfalo
13.
Foods ; 9(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023115

RESUMO

The commercialization of porgies or seabreams of the family Sparidae has greatly increased in the last decade, and some valuable species have become subject to seafood substitution. DNA regions currently used for fish species identification in fresh and processed products belong to the mitochondrial (mt) genes cytochrome b (Cytb), cytochrome c oxidase I (COI), 16S and 12S. However, these markers amplify for fragments with lower divergence within and between some species, failing to provide informative barcodes. We adopted comparative mitogenomics, through the analysis of complete mtDNA sequences, as a compatible approach toward studying new barcoding markers. The intent is to develop a specific and rapid assay for the identification of the common pandora Pagellus erythrinus, a sparid species frequently subject to fraudulent replacement. The genetic diversity analysis (Hamming distance, p-genetic distance, gene-by-gene sequence variability) between 16 sparid mtDNA genomes highlighted the discriminating potential of a 291 bp NAD2 gene fragment. A pair of species-specific primers were successfully designed and tested by end-point and real-time PCR, achieving amplification only in P. erythrinus among several fish species. The use of the NAD2 barcoding marker provides a rapid presence/absence method for the identification of P. erythrinus.

14.
Sci Adv ; 6(34): eabc3510, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875118

RESUMO

How the hand and digits originated from fish fins during the Devonian fin-to-limb transition remains unsolved. Controversy in this conundrum stems from the scarcity of ontogenetic data from extant lobe-finned fishes. We report the patterning of an autopod-like domain by hoxa13 during fin development of the Australian lungfish, the most closely related extant fish relative of tetrapods. Differences from tetrapod limbs include the absence of digit-specific expansion of hoxd13 and hand2 and distal limitation of alx4 and pax9, which potentially evolved through an enhanced response to shh signaling in limbs. These developmental patterns indicate that the digit program originated in postaxial fin radials and later expanded anteriorly inside of a preexisting autopod-like domain during the evolution of limbs. Our findings provide a genetic framework for the transition of fins into limbs that supports the significance of classical models proposing a bending of the tetrapod metapterygial axis.

15.
Dev Genes Evol ; 230(4): 295-304, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632492

RESUMO

Earliest craniates possess a newly enlarged, elaborated forebrain with new cell types and neuronal networks. A key question in vertebrate evolution is when and how this cerebral expansion took place. The exon-junction complex (EJC) plays an essential role in mRNA processing of all Eukarya. Recently, it has been proposed that the EJC represses recursive RNA splicing in Deuterostomes, with implication in human brain diseases like microcephaly and depression. However, the EJC or EJC subunit contribution to brain development in non-vertebrate Deuterostomes remained unknown. Being interested in the evolution of chordate characters, we focused on the model species, Branchiostoma lanceolatum (Cephalochordata) and Ciona robusta (Tunicata), with the aim to investigate the ancestral and the derived expression state of Magoh orthologous genes. This study identifies that Magoh is part of a conserved syntenic group exclusively in vertebrates and suggests that Magoh has experienced duplication and loss events in mammals. During early development in amphioxus and ascidian, maternal contribution and zygotic expression of Magoh genes in various types of progenitor cells and tissues are consistent with the condition observed in other Bilateria. Later in development, we also show expression of Magoh in the brain of cephalochordate and ascidian larvae. Collectively, these results provide a basis to further define what functional role(s) Magoh exerted during nervous system development and evolution.


Assuntos
Ciona intestinalis/genética , Anfioxos/genética , Sintenia/genética , Animais , Ciona intestinalis/crescimento & desenvolvimento , Ciona intestinalis/metabolismo , Anfioxos/crescimento & desenvolvimento , Anfioxos/metabolismo , Proteínas Nucleares/genética
16.
Zoological Lett ; 6: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537244

RESUMO

Fluorescence and luminescence are widespread optical phenomena exhibited by organisms living in terrestrial and aquatic environments. While many underlying mechanistic features have been identified and characterized at the molecular and cellular levels, much less is known about the ecology and evolution of these forms of bioluminescence. In this review, we summarize recent findings in the evolutionary history and ecological functions of fluorescent proteins (FP) and pigments. Evidence for green fluorescent protein (GFP) orthologs in cephalochordates and non-GFP fluorescent proteins in vertebrates suggests unexplored evolutionary scenarios that favor multiple independent origins of fluorescence across metazoan lineages. Several context-dependent behavioral and physiological roles have been attributed to fluorescent proteins, ranging from communication and predation to UV protection. However, rigorous functional and mechanistic studies are needed to shed light on the ecological functions and control mechanisms of fluorescence.

17.
Mar Environ Res ; 158: 104950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217300

RESUMO

Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Invertebrados , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
18.
Mol Ecol ; 29(2): 292-307, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793138

RESUMO

The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Urocordados/genética , Animais , Ecologia , Ecossistema , Transcriptoma/genética , Urocordados/classificação
19.
Mitochondrial DNA B Resour ; 5(3): 2379-2381, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33457799

RESUMO

The sharpsnout seabream Diplodus puntazzo Walbaum, 1792 is a target species of small-scale fishery activities and is cage-cultured for human consumption. Nonetheless, genetic information on this species is limited. We here first sequence its complete mitochondrial genome. The sequence is composed of 16,638 base pairs, accounting for 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 2 non-coding regions (D-loop and L-origin). The overall nucleotide composition is: 27.4% A, 28.9% C, 26.9% T, and 16.8% G. Maximum likelihood analyses placed D. puntazzo close to Acanthopagrus and some Pagellus species.

20.
Gene X ; 2: 100011, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31193955

RESUMO

The paired-type homeodomain transcription factor Uncx is involved in multiple processes of embryogenesis in vertebrates. Reasoning that zebrafish genes uncx4.1 and uncx are orthologs of mouse Uncx, we studied their genomic environment and developmental expression. Evolutionary analyses indicate the zebrafish uncx genes as being paralogs deriving from teleost-specific whole-genome duplication. Whole-mount in situ mRNA hybridization of uncx transcripts in zebrafish embryos reveals novel expression domains, confirms those previously known, and suggests sub-functionalization of paralogs. Using genetic mutants and pharmacological inhibitors, we investigate the role of signaling pathways on the expression of zebrafish uncx genes in developing somites. In identifying putative functional role(s) of zebrafish uncx genes, we hypothesized that they encode transcription factors that coordinate growth and innervation of somitic muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA