Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anaerobe ; 88: 102858, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692475

RESUMO

Historically, mutagenesis in the non-model enteropathogenic bacterium Clostridioides difficile has been challenging. Developing a versatile and reliable method of generating targeted mutations in C. difficile is important to further our understanding of its pathogenesis. Some of the most common targeted mutagenesis systems rely on allelic exchange mediated by either uracil auxotrophy combined with a toxic uracil precursor, a toxin/anti-toxin system, group II introns, or CRISPR/Cas mutagenesis. However, each of these methods suffers from its own issues. Here, we develop and test an allelic exchange strategy which better facilitates screening for integration and selecting for excision than previous systems. This is achieved by controlling plasmid replication with a theophylline-dependent riboswitch cloned upstream of repA, the gene whose product controls plasmid replication. This allows efficient mutant generation, can be performed in a wild-type strain of C. difficile, does not have the off-target effects inherent to group II introns, and alleviates the problem of testing multiple gRNA targets in CRISPR mutagenesis.

2.
Anaerobe ; 87: 102844, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582142

RESUMO

The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.

3.
PLoS Pathog ; 19(11): e1011741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956166

RESUMO

A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.


Assuntos
Clostridioides difficile , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides , Esporos Bacterianos/metabolismo , Fatores de Transcrição/metabolismo , Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Bacillus subtilis/metabolismo
4.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292792

RESUMO

Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.

5.
Crit Rev Microbiol ; 49(3): 334-349, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35389761

RESUMO

Clostridioides difficile (CD), a nosocomial gut pathogen, produces two major exotoxins, TcdA and TcdB, which disrupt the gut epithelial barrier and induce inflammatory/immune responses, leading to symptoms ranging from mild diarrhoea to pseudomembranous colitis and potentially to death. The expression of toxins is regulated by various transcription factors (TFs) which are induced in response to CD physiological life stages, nutritional availability, and host environment. This review summarises our current understanding on the regulation of toxin expression by TFs that interconnect with pathways of flagellar synthesis, quorum sensing, motility, biofilm formation, sporulation, and phase variation. The pleiotropic roles of some key TFs suggest that toxin production is tightly linked to other cellular processes of the CD physiology.


This review summarises the current knowledge of the transcription factors involved in regulation of toxin production, which is affected by C. difficile physiological life stages, nutritional availability, and host environment in the gut.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clostridioides difficile/genética , Clostridioides/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Microbiol Resour Announc ; 11(12): e0083322, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36342279

RESUMO

A two-plasmid mutagenesis system for Clostridioides difficile is described that improves ease of use and efficiency in creating site-directed mutations. pJB06 contains a xylose-inducible cas9 gene, while the second plasmid (pJB07) encodes the corresponding guide RNA (gRNA) and regions of homology for repair of the introduced double-stranded DNA (dsDNA) breaks, both of which are replaceable via restriction digest.

7.
NPJ Biofilms Microbiomes ; 8(1): 94, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450806

RESUMO

The Clostridioides difficile pathogen is responsible for nosocomial infections. Germination is an essential step for the establishment of C. difficile infection (CDI) because toxins that are secreted by vegetative cells are responsible for the symptoms of CDI. Germination can be stimulated by the combinatorial actions of certain amino acids and either conjugated or deconjugated cholic acid-derived bile salts. During synthesis in the liver, cholic acid- and chenodeoxycholic acid-class bile salts are conjugated with either taurine or glycine at the C24 carboxyl. During GI transit, these conjugated bile salts are deconjugated by microbes that express bile salt hydrolases (BSHs). Here, we surprisingly find that several C. difficile strains have BSH activity. We observed this activity in both C. difficile vegetative cells and in spores and that the observed BSH activity was specific to taurine-derived bile salts. Additionally, we find that this BSH activity can produce cholate for metabolic conversion to deoxycholate by C. scindens. The C. scindens-produced deoxycholate signals to C. difficile to initiate biofilm formation. Our results show that C. difficile BSH activity has the potential to influence the interactions between microbes, and this could extend to the GI setting.


Assuntos
Clostridioides difficile , Clostridioides , Especificidade por Substrato , Ácidos e Sais Biliares , Ácidos Cólicos , Ácido Desoxicólico , Biofilmes
8.
Gut Microbes ; 14(1): 2094672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793402

RESUMO

The nosocomial pathogen Clostridioides difficile is a burden to the healthcare system. Gut microbiome disruption, most commonly by broad-spectrum antibiotic treatment, is well established to generate a state that is susceptible to CDI. A variety of metabolites produced by the host and/or gut microbiota have been shown to interact with C. difficile. Certain bile acids promote/inhibit germination while other cholesterol-derived compounds and amino acids used in the Stickland metabolic pathway affect growth and CDI colonization. Short chain fatty acids maintain intestinal barrier integrity and a myriad of other metabolic compounds are used as nutritional sources or used by C. difficile to inhibit or outcompete other bacteria in the gut. As the move toward non-antibiotic CDI treatment takes place, a deeper understanding of interactions between C. difficile and the host's gut microbiome and metabolites becomes more relevant.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácidos e Sais Biliares , Clostridioides , Infecções por Clostridium/microbiologia , Humanos
9.
J Bacteriol ; 204(7): e0021022, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35762766

RESUMO

Clostridioides difficile spores are the infective form for this endospore-forming organism. The vegetative cells are intolerant to oxygen and poor competitors with a healthy gut microbiota. Therefore, in order for C. difficile to establish infection, the spores have to germinate in an environment that supports vegetative growth. To initiate germination, C. difficile uses Csp-type germinant receptors that consist of the CspC and CspA pseudoproteases as the bile acid and cogerminant receptors, respectively. CspB is a subtilisin-like protease that cleaves the inhibitory propeptide from the pro-SleC cortex lytic enzyme, thereby activating it and initiating cortex degradation. Though several locations have been proposed for where these proteins reside within the spore (i.e., spore coat, outer spore membrane, cortex, and inner spore membrane), these have been based, mostly, on hypotheses or prior data in Clostridium perfringens. In this study, we visualized the germination and outgrowth process using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and used immunogold labeling to visualize key germination regulators. These analyses localize these key regulators to the spore cortex region for the first time. IMPORTANCE Germination by C. difficile spores is the first step in the establishment of potentially life-threatening C. difficile infection (CDI). A deeper understanding of the mechanism by which spores germinate may provide insight for how to either prevent spore germination into a disease-causing vegetative form or trigger germination prematurely when the spore is either in the outside environment or in a host environment that does not support the establishment of colonization/disease.


Assuntos
Clostridioides difficile , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Clostridioides , Esporos Bacterianos
11.
Curr Opin Microbiol ; 65: 101-107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808546

RESUMO

Germination by Clostridioides difficile spores is an essential step in pathogenesis. Spores are metabolically dormant forms of bacteria that resist severe conditions. Work over the last 10 years has elucidated that C. difficile spores germinate thorough a novel pathway. This review summarizes our understanding of C. difficile spore germination and the factors involved in germinant recognition, cortex degradation and DPA release.


Assuntos
Clostridioides difficile , Proteínas de Bactérias/metabolismo , Clostridioides , Esporos Bacterianos
12.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34882774

RESUMO

Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Proteínas de Bactérias/genética , Proteínas de Repetição de Anquirina Projetadas , Enterotoxinas , Camundongos , Peptídeo Hidrolases
13.
PLoS Pathog ; 17(10): e1010015, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665847

RESUMO

Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.


Assuntos
Ácidos e Sais Biliares/metabolismo , Infecções por Clostridium/metabolismo , Resistência à Doença/fisiologia , Microbioma Gastrointestinal/fisiologia , Animais , Camundongos , Camundongos Knockout
14.
PLoS Pathog ; 17(9): e1009516, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34496003

RESUMO

Clostridioides difficile is a nosocomial pathogen which causes severe diarrhea and colonic inflammation. C. difficile causes disease in susceptible patients when endospores germinate into the toxin-producing vegetative form. The action of these toxins results in diarrhea and the spread of spores into the hospital and healthcare environments. Thus, the destruction of spores is imperative to prevent disease transmission between patients. However, spores are resilient and survive extreme temperatures, chemical exposure, and UV treatment. This makes their elimination from the environment difficult and perpetuates their spread between patients. In the model spore-forming organism, Bacillus subtilis, the small acid-soluble proteins (SASPs) contribute to these resistances. The SASPs are a family of small proteins found in all endospore-forming organisms, C. difficile included. Although these proteins have high sequence similarity between organisms, the role(s) of the proteins differ. Here, we investigated the role of the main α/ß SASPs, SspA and SspB, and two annotated putative SASPs, CDR20291_1130 and CDR20291_3080, in protecting C. difficile spores from environmental insults. We found that SspA is necessary for conferring spore UV resistance, SspB minorly contributes, and the annotated putative SASPs do not contribute to UV resistance. In addition, the SASPs minorly contribute to the resistance of nitrous acid. Surprisingly, the combined deletion of sspA and sspB prevented spore formation. Overall, our data indicate that UV resistance of C. difficile spores is dependent on SspA and that SspA and SspB regulate/serve as a checkpoint for spore formation, a previously unreported function of SASPs.


Assuntos
Adesinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Esporos Bacterianos/metabolismo , Esporos Bacterianos/efeitos da radiação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Raios Ultravioleta
15.
J Bacteriol ; 203(21): e0039421, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424035

RESUMO

Clostridioides difficile spores, like the spores from most endospore-forming organisms, are a metabolically dormant stage of development with a complex structure that conveys considerable resistance to environmental conditions, e.g., wet heat. This resistance is due to the large amount of dipicolinic acid (DPA) that is taken up by the spore core, preventing rotational motion of the core proteins. DPA is synthesized by the mother cell, and its packaging into the spore core is mediated by the products of the spoVA operon, which has a variable number of genes, depending on the organism. C. difficile encodes 3 spoVA orthologues, spoVAC, spoVAD, and spoVAE. Prior work has shown that C. difficile SpoVAC is a mechanosensing protein responsible for DPA release from the spore core upon the initiation of germination. However, the roles of SpoVAD and SpoVAE remain unclear in C. difficile. In this study, we analyzed the roles of SpoVAD and SpoVAE and found that they are essential for DPA uptake into the spore, similar to SpoVAC. Using split luciferase protein interaction assays, we found that these proteins interact, and we propose a model where SpoVAC/SpoVAD/SpoVAE proteins interact at or near the inner spore membrane, and each member of the complex is essential for DPA uptake into the spore core. IMPORTANCE C. difficile spore heat resistance provides an avenue for it to survive the disinfection protocols in hospital and community settings. The spore heat resistance is mainly the consequence of the high DPA content within the spore core. By elucidating the mechanism by which DPA is taken up by the spore core, this study may provide insight into how to disrupt the spore heat resistance with the aim of making the current disinfection protocols more efficient at preventing the spread of C. difficile in the environment.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ácidos Picolínicos/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Clostridioides difficile/genética , Esporos Bacterianos/genética
16.
J Bacteriol ; 203(12): e0000821, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33820795

RESUMO

The endospore-forming pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and is a significant burden on the community and health care. C. difficile, like all forms of life, incorporates selenium into proteins through a selenocysteine synthesis pathway. The known selenoproteins in C. difficile are involved in a metabolic process that uses amino acids as the sole carbon and nitrogen source (Stickland metabolism). The Stickland metabolic pathway requires the use of two selenium-containing reductases. In this study, we built upon our initial characterization of the CRISPR-Cas9-generated selD mutant by creating a CRISPR-Cas9-mediated restoration of the selD gene at the native locus. Here, we use these CRISPR-generated strains to analyze the importance of selenium-containing proteins on C. difficile physiology. SelD is the first enzyme in the pathway for selenoprotein synthesis, and we found that multiple aspects of C. difficile physiology were affected (e.g., growth, sporulation, and outgrowth of a vegetative cell post-spore germination). Using transcriptome sequencing (RNA-seq), we identified multiple candidate genes which likely aid the cell in overcoming the global loss of selenoproteins to grow in medium which is favorable for using Stickland metabolism. Our results suggest that the absence of selenophosphate (i.e., selenoprotein synthesis) leads to alterations to C. difficile physiology so that NAD+ can be regenerated by other pathways. IMPORTANCE C. difficile is a Gram-positive, anaerobic gut pathogen which infects thousands of individuals each year. In order to stop the C. difficile life cycle, other nonantibiotic treatment options are in urgent need of development. Toward this goal, we find that a metabolic process used by only a small fraction of the microbiota is important for C. difficile physiology: Stickland metabolism. Here, we use our CRISPR-Cas9 system to "knock in" a copy of the selD gene into the deletion strain to restore selD at its native locus. Our findings support the hypothesis that selenium-containing proteins are important for several aspects of C. difficile physiology, from vegetative growth to spore formation and outgrowth postgermination.


Assuntos
Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Sistemas CRISPR-Cas , Deleção de Genes , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , RNA Bacteriano/genética , RNA-Seq
17.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804011

RESUMO

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efeitos dos fármacos , Organoides/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
18.
mSphere ; 5(2)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132157

RESUMO

An important risk factor for acquiring Clostridioides difficile infection is antibiotic use. Therefore, a detailed knowledge of the physiology and the virulence factors can help drive the development of new diagnostic tools and nonantibiotic therapeutic agents to combat these organisms. Several genetic systems are available to study C. difficile in the laboratory environment, and all rely on stably replicating or segregationally unstable plasmids. Currently, the transfer of plasmids into C. difficile can only be performed by conjugation using Escherichia coli or Bacillus subtilis as conjugal donors. Here we report a method to introduce plasmid DNA into C. difficile using electroporation and test factors that might contribute to higher transformation efficiencies: osmolyte used to stabilize weakened cells, DNA concentration, and recovery time postelectroporation. Depending on the C. difficile strain and plasmid used, this transformation protocol achieves between 20 and 200 colonies per microgram of DNA and is mostly influenced by the recovery time postelectroporation. Based on our findings, we recommend that each strain be tested for the optimum recovery time in each lab.IMPORTANCE Understanding the underlying biology of pathogens is essential to develop novel treatment options. To drive this understanding, genetic tools are essential. In recent years, the genetic toolbox available to Clostridioides difficile researchers has expanded significantly but still requires the conjugal transfer of DNA from a donor strain into C. difficile Here we describe an electroporation-based transformation protocol that was effective at introducing existing genetic tools into different C. difficile strains.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Eletroporação/métodos , Plasmídeos/genética , Transformação Bacteriana
20.
J Bacteriol ; 201(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085694

RESUMO

The genus Clostridium is composed of bioproducers, which are important for the industrial production of chemicals, as well as pathogens, which are a significant burden to the patients and on the health care industry. Historically, even though these bacteria are well known and are commonly studied, the genetic technologies to advance our understanding of these microbes have lagged behind other systems. New tools would continue the advancement of our understanding of clostridial physiology. The genetic modification systems available in several clostridia are not as refined as in other organisms and each exhibit their own drawbacks. With the advent of the repurposing of the CRISPR-Cas systems for genetic modification, the tools available for clostridia have improved significantly over the past four years. Several CRISPR-Cas systems such as using wild-type Cas9, Cas9n, dCas9/CRISPR interference (CRISPRi) and a newly studied Cpf1/Cas12a, are reported. These have the potential to greatly advance the study of clostridial species leading to future therapies or the enhanced production of industrially relevant compounds. Here we discuss the details of the CRISPR-Cas systems as well as the advances and current issues in the developed clostridial systems.


Assuntos
Clostridium/genética , Edição de Genes/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Clostridium/metabolismo , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA