Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19702-19712, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982799

RESUMO

The production of fossil fuels, including oil, gas, and coal, retains a dominant share in US energy production and serves as a major anthropogenic source of methane, a greenhouse gas with a high warming potential. In addition to directly emitting methane into the air, fossil fuel production can release methane into groundwater, and that methane may eventually reach the atmosphere. In this study, we collected 311 water samples from an unconventional oil and gas (UOG) production region in Pennsylvania and an oil and gas (O&G) and coal production region across Ohio and West Virginia. Methane concentration was negatively correlated to distance to the nearest O&G well in the second region, but such a correlation was shown to be driven by topography as a confounding variable. Furthermore, sulfate concentration was negatively correlated with methane concentration and with distance to coal mining in the second region, and these correlations were robust even when considering topography. We hypothesized that coal mining enriched sulfate in groundwater, which in turn inhibited methanogenesis and enhanced microbial methane oxidation. Thus, this study highlights the complex interplay of multiple factors in shaping groundwater methane concentrations, including biogeochemical conversion, topography, and conventional fossil extraction.


Assuntos
Combustíveis Fósseis , Água Subterrânea , Campos de Petróleo e Gás , Metano , Região dos Apalaches , Carvão Mineral , Sulfatos
2.
Geohealth ; 7(4): e2022GH000758, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064218

RESUMO

Unconventional oil and gas (UOG) development, made possible by horizontal drilling and high-volume hydraulic fracturing, has been fraught with controversy since the industry's rapid expansion in the early 2000's. Concerns about environmental contamination and public health risks persist in many rural communities that depend on groundwater resources for drinking and other daily needs. Spatial disparities in UOG risks can pose distributive environmental injustice if such risks are disproportionately borne by marginalized communities. In this paper, we analyzed groundwater vulnerability to contamination from UOG as a physically based measure of risk in conjunction with census tract level sociodemographic characteristics describing social vulnerability in the northern Appalachian Basin. We found significant associations between elevated groundwater vulnerability and lower population density, consistent with UOG development occurring in less densely populated rural areas. We also found associations between elevated groundwater vulnerability and lower income, higher proportions of elderly populations, and higher proportion of mobile homes, suggesting a disproportionate risk burden on these socially vulnerable groups. We did not find a statistically significant association between elevated groundwater vulnerability and populations of racial/ethnic minorities in our study region. Household surveys provided empirical support for a relationship between sociodemographic characteristics and capacity to assess and mitigate exposures to potentially contaminated water. Further research is needed to probe if the observed disparities translate to differences in chemical exposure and adverse health outcomes.

3.
Environ Sci Technol ; 56(17): 12126-12136, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35960643

RESUMO

Concerns over unconventional oil and gas (UOG) development persist, especially in rural communities that rely on shallow groundwater for drinking and other domestic purposes. Given the continued expansion of the industry, regional (vs local scale) models are needed to characterize groundwater contamination risks faced by the increasing proportion of the population residing in areas that accommodate UOG extraction. In this paper, we evaluate groundwater vulnerability to contamination from surface spills and shallow subsurface leakage of UOG wells within a 104,000 km2 region in the Appalachian Basin, northeastern USA. We test a computationally efficient ensemble approach for simulating groundwater flow and contaminant transport processes to quantify vulnerability with high resolution. We also examine metamodels, or machine learning models trained to emulate physically based models, and investigate their spatial transferability. We identify predictors describing proximity to UOG, hydrology, and topography that are important for metamodels to make accurate vulnerability predictions outside their training regions. Using our approach, we estimate that 21,000-30,000 individuals in our study area are dependent on domestic water wells that are vulnerable to contamination from UOG activities. Our novel modeling framework could be used to guide groundwater monitoring, provide information for public health studies, and assess environmental justice issues.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Hidrocarbonetos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Poços de Água
4.
Environ Sci Process Impacts ; 24(2): 252-264, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35018906

RESUMO

Horizontal drilling with hydraulic fracturing (HDHF) relies on the use of anthropogenic organic chemicals in proximity to residential areas, raising concern for groundwater contamination. Here, we extensively characterized organic contaminants in 94 domestic groundwater sites in Northeastern Pennsylvania after ten years of activity in the region. All analyzed volatile and semi-volatile compounds were below recommended United States Environmental Protection Agency maximum contaminant levels, and integrated concentrations across two volatility ranges, gasoline range organic compounds (GRO) and diesel range organic compounds (DRO), were low (0.13 ± 0.06 to 2.2 ± 0.7 ppb and 5.2-101.6 ppb, respectively). Following dozens of correlation analyses with distance-to-well metrics and inter-chemical indicator correlations, no statistically significant correlations were found except: (1) GRO levels were higher within 2 km of violations and (2) correlation between DRO and a few inorganic species (e.g., Ba and Sr) and methane. The correlation of DRO with inorganic species suggests a potential high salinity source, whereas elevated GRO may result from nearby safety violations. Highest-concentration DRO samples contained bis-2-ethylhexyl phthalate and N,N-dimethyltetradecylamine. Nevertheless, the overall low rate of contamination for the analytes could be explained by a spatially-resolved hydrogeologic model, where estimated transport distances from gas wells over the relevant timeframes were short relative to the distance to the nearest groundwater wells. Together, the observations and modeled results suggest a low probability of systematic groundwater organic contamination in the region.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água Subterrânea/química , Metano/análise , Campos de Petróleo e Gás , Pennsylvania , Estados Unidos , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 56(2): 1091-1103, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34982938

RESUMO

Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Região dos Apalaches , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(24): 16413-16422, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34874708

RESUMO

Conflicting evidence exists as to whether or not unconventional oil and gas (UOG) development has enhanced methane transport into groundwater aquifers over the past 15 years. In this study, recent groundwater samples were collected from 90 domestic wells and 4 springs in Northeastern Pennsylvania located above the Marcellus Shale after more than a decade of UOG development. No statistically significant correlations were observed between the groundwater methane level and various UOG geospatial metrics, including proximity to UOG wells and well violations, as well as the number of UOG wells and violations within particular radii. The δ13C and methane-to-higher chain hydrocarbon signatures suggested that the elevated methane levels were not attributable to UOG development nor could they be explained by using simple biogenic-thermogenic end-member mixing models. Instead, groundwater methane levels were significantly correlated with geochemical water type and topographical location. Comparing a subset of contemporary methane measurements to their co-located pre-drilling records (n = 64 at 49 distinct locations) did not indicate systematic increases in methane concentration but did reveal several cases of elevated concentration (n = 12) across a spectrum of topographies. Multiple lines of evidence suggested that the high-concentration groundwater methane could have originated from shallow thermogenic methane that migrated upward into groundwater aquifers with Appalachian Basin brine.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Metano/análise , Gás Natural , Campos de Petróleo e Gás , Pennsylvania , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA