Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6548, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848415

RESUMO

Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.


Assuntos
Quinases da Família src , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Domínio Catalítico , Quinases da Família src/metabolismo
2.
ACS Cent Sci ; 8(10): 1383-1392, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36313161

RESUMO

Wall teichoic acids (WTAs) are glycopolymers decorating the surface of Gram-positive bacteria and potential targets for antibody-mediated treatments against Staphylococcus aureus, including methicillin-resistant (MRSA) strains. Through a combination of glycan microarray, synthetic chemistry, crystallography, NMR, and computational studies, we unraveled the molecular and structural details of fully defined synthetic WTA fragments recognized by previously described monoclonal antibodies (mAbs 4461 and 4497). Our results unveiled the structural requirements for the discriminatory recognition of α- and ß-GlcNAc-modified WTA glycoforms by the complementarity-determining regions (CDRs) of the heavy and light chains of the mAbs. Both mAbs interacted not only with the sugar moiety but also with the phosphate groups as well as residues in the ribitol phosphate (RboP) units of the WTA backbone, highlighting their significant role in ligand specificity. Using elongated WTA fragments, containing two sugar modifications, we also demonstrated that the internal carbohydrate moiety of α-GlcNAc-modified WTA is preferentially accommodated in the binding pocket of mAb 4461 with respect to the terminal moiety. Our results also explained the recently documented cross-reactivity of mAb 4497 for ß-1,3/ß-1,4-GlcNAc-modified WTA, revealing that the flexibility of the RboP backbone is crucial to allow positioning of both glycans in the antibody binding pocket.

3.
Medicine (Baltimore) ; 99(12): e19427, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195937

RESUMO

BACKGROUND: Severe and morbid obesity are increasing globally, particularly in women. As BMI increases, the likelihood of anovulation is higher. The primary aim of the EMOVAR clinical trial is to examine, over the short (16 weeks) and medium (12 months) term, the effects of a supervised physical exercise program (focused primarily on aerobic and resistance training) on ovarian function in women with severe/morbid obesity who have undergone bariatric surgery. Secondary objectives are to examine the effects of the intervention on chronic inflammation, insulin resistance, arterial stiffness, physical fitness, and health-related quality of life. METHODS: This is a randomized controlled trial in which ∼40 female bariatric surgery patients, aged between 18 and 45 years old, will be included. Participants assigned to the experimental group will perform a total of 48 sessions of supervised concurrent (strength and aerobic) training (3 sessions/week, 60 min/session) spread over 16 weeks. Patients assigned to the control group will receive lifestyle recommendations. Outcomes will be assessed at baseline, week 16 (i.e., after the exercise intervention) and 12 months after surgery. The primary outcome is ovarian function using the Sex-Hormone Binding Globuline, measured in serum. Secondary outcomes are serum levels of anti-mullerian hormone, TSH, T4, FSH, LH, estradiol, prolactine, and free androgen index, as well as oocyte count, the diameters of both ovaries, endometrial thickness, and uterine arterial pulsatility index (obtained from a transvaginal ultrasound), the duration of menstrual bleeding and menstrual cycle duration (obtained by personal interview) and hirsutism (Ferriman Gallwey Scale). Other secondary outcomes include serum markers of chronic inflammation and insulin resistance (i.e., C-reactive protein, interleukin 6, tumor necrosis factor-alpha, leptin, glomerular sedimentation rate, glucose, insulin and the HOMA-IR), arterial stiffness, systolic, diastolic and mean blood pressure, body composition, and total weight loss. Physical fitness (including cardiorespiratory fitness, muscular strength, and flexibility), health-related quality of life (SF-36 v2) and sexual function (Female Sexual Function Index) will also be measured. DISCUSSION: This study will provide, for the first time, relevant information on the effects of exercise training on ovarian function and underlying mechanisms in severe/morbid obese women following bariatric surgery. TRIAL REGISTRATION NUMBER: ISRCTN registry (ISRCTN27697878).


Assuntos
Cirurgia Bariátrica/reabilitação , Terapia por Exercício/métodos , Obesidade Mórbida/terapia , Adolescente , Adulto , Exercício Físico , Feminino , Humanos , Inflamação/fisiopatologia , Resistência à Insulina/fisiologia , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Testes de Função Ovariana , Aptidão Física/fisiologia , Qualidade de Vida , Método Simples-Cego , Rigidez Vascular/fisiologia , Adulto Jovem
4.
Biochim Biophys Acta Proteins Proteom ; 1868(4): 140377, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31982578

RESUMO

The N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) subfamily from the enolase superfamily contains different enzymes showing promiscuous N-substituted-amino acid racemase (NxAR) activity. These enzymes were originally named as N-acylamino acid racemases because of their industrial application. Nonetheless, they are pivotal in several enzymatic cascades due to their versatility to catalyze a wide substrate spectrum, allowing the production of optically pure d- or l-amino acids from cheap precursors. These compounds are of paramount economic interest, since they are used as food additives, in the pharmaceutical and cosmetics industries and/or as chiral synthons in organic synthesis. Despite its economic importance, the discovery of new N-succinylamino acid racemases has become elusive, since classical sequence-based annotation methods proved ineffective in their identification, due to a high sequence similarity among the members of the enolase superfamily. During the last decade, deeper investigations into different members of the NSAR/OSBS subfamily have shed light on the classification and identification of NSAR enzymes with NxAR activity of biotechnological potential. This review aims to gather the dispersed information on NSAR/OSBS members showing NxAR activity over recent decades, focusing on their biotechnological applications and providing practical advice to identify new enzymes.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Biotecnologia , Isomerases de Aminoácido/classificação , Isomerases de Aminoácido/genética , Evolução Biológica , Enzimas Imobilizadas , Modelos Moleculares , Filogenia , Engenharia de Proteínas , Alinhamento de Sequência
5.
Mol Biotechnol ; 57(5): 454-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25875730

RESUMO

N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding.


Assuntos
Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Geobacillus stearothermophilus/enzimologia , Isomerases de Aminoácido/química , Isomerases de Aminoácido/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Geobacillus stearothermophilus/genética , Mutagênese , Desnaturação Proteica , Multimerização Proteica
6.
Appl Microbiol Biotechnol ; 99(1): 283-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24993356

RESUMO

Taking advantage of the catalytic promiscuity of L-carbamoylase from Geobacillus stearothermophilus CECT43 (BsLcar) and N-succinyl-amino acid racemase from Geobacillus kaustophilus CECT4264 (GkNSAAR), we have evaluated the production of different optically pure L-α-amino acids starting from different racemic N-formyl- and N-carbamoyl-amino acids using a dynamic kinetic resolution approach. The enzymes were immobilized on two different solid supports, resulting in improved stability of the enzymes in terms of thermostability and storage when compared to the enzymes in solution. The bienzymatic system retained up to 80% conversion efficiency after 20 weeks at 4 °C and up to 90% after 1 week at 45 °C. The immobilization process also resulted in a great enhancement of the activity of BsLcar toward N-formyl-tryptophan, showing for the first time that substrate specificity of L-carbamoylases can be influenced by this approach. The system was effective for the biosynthesis of natural and unnatural L-amino acids (enantiomeric excess (e.e.) >99.5%), such as L-methionine, L-alanine, L-tryptophan, L-homophenylalanine, L-aminobutyric acid, and L-norleucine, with a higher performance toward N-formyl-α-amino acid substrates. Biocatalyst reuse was studied, and after 10 reaction cycles, over 75% activity remained.


Assuntos
Amidoidrolases/metabolismo , Aminoácidos/metabolismo , Enzimas Imobilizadas/metabolismo , Amidoidrolases/química , Isomerases de Aminoácido/química , Estabilidade Enzimática , Geobacillus/enzimologia , Temperatura
7.
Biochimie ; 99: 178-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24333989

RESUMO

Allantoinases (allantoin amidohydrolase, E.C. 3.5.2.5) catalyze the hydrolysis of the amide bond of allantoin to form allantoic acid, in those organisms where allantoin is not the final product of uric acid degradation. Despite their importance in the purine catabolic pathway, sequences of microbial allantoinases with proven activity are scarce, and only the enzyme from Escherichia coli (AllEco) has been studied in detail in the genomic era. In this work, we report the cloning, purification and characterization of the recombinant allantoinase from Bacillus licheniformis CECT 20T (AllBali). The enzyme was a homotetramer with an apparent Tm of 62 ± 1 °C. Optimal parameters for the enzyme activity were pH 7.5 and 50 °C, showing apparent Km and kcat values of 17.7 ± 2.7 mM and 24.4 ± 1.5 s(-1), respectively. Co(2+) proved to be the most effective cofactor, inverting the enantioselectivity of AllBali when compared to that previously reported for other allantoinases. The common ability of different cyclic amidohydrolases to hydrolyze distinct substrates to the natural one also proved true for AllBali. The enzyme was able to hydrolyze hydantoin, dihydrouracil and 5-ethyl-hydantoin, although at relative rates 3-4 orders of magnitude lower than with allantoin. Mutagenesis experiments suggest that S292 is likely implicated in the binding of the allantoin ring through the carbonyl group of the polypeptide main chain, which is the common mechanism observed in other members of the amidohydrolase family. In addition, our results suggest an allosteric effect of H2O2 toward allantoinase.


Assuntos
Amidoidrolases/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Alantoína/química , Regulação Alostérica , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Domínio Catalítico , Cobalto/química , Cisteína/química , Inibidores Enzimáticos/química , Hidantoínas/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Manganês/química , Peso Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estereoisomerismo , Especificidade por Substrato , Temperatura de Transição , Uracila/análogos & derivados , Uracila/química
8.
Appl Environ Microbiol ; 77(16): 5761-9, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21705545

RESUMO

Formamidases (EC 3.5.1.49) are poorly characterized proteins. In spite of this scarce knowledge, ammonia has been described as playing a central role in the pathogenesis of human pathogens such as Helicobacter pylori, for which formamidase has been shown to participate in the nitrogen metabolic pathway. Sequence analysis has revealed that at least two different groups of formamidases are classified as EC 3.5.1.49: on the one hand, the derivatives of the FmdA-AmdA superfamily, which are the best studied to date, and on the other hand, the derivatives of Helicobacter pylori AmiF. Here we present the cloning, purification, and characterization of a recombinant formamidase from Bacillus cereus CECT 5050T (BceAmiF), the second member of the AmiF subfamily to be characterized, showing new features of the enzyme further supporting its relationship with aliphatic amidases. We also present homology modeling-based mutational studies confirming the importance of the Glu140 and Tyr191 residues in the enzymatic activities of the AmiF family. Moreover, we can conclude that a second glutamate residue is critical in several members of the nitrilase superfamily, meaning that what has consistently been identified as a C-E-K triad is in fact a C-E-E-K tetrad.


Assuntos
Amidoidrolases/química , Aminoidrolases/metabolismo , Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Amidoidrolases/genética , Bacillus cereus/genética , Proteínas de Bactérias/genética , Sequência de Bases , Catálise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular/métodos , Clonagem Molecular , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/química , Escherichia coli/genética , Ácido Glutâmico/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA