Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7811, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016959

RESUMO

Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.

2.
Adv Mater ; 35(42): e2302826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562445

RESUMO

Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.

3.
Small Methods ; 7(10): e2300568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454348

RESUMO

MXenes, a family of 2D transition-metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes' thermal stability can enable deeper insights into their structure-property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3 C2 Tx , Mo2 TiC2 Tx , and Ti2 CTx ) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near-IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3 C2 Tx and Ti2 CTx , respectively, have the highest and lowest thermal stability, indicating the role of transition-metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure-property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.

4.
Front Public Health ; 10: 997626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504977

RESUMO

Introduction: The COVID-19 pandemic has considerably affected human beings most of whom are healthcare workers (HCWs) combating the disease in the front line. Methods: This cross-sectional study aims to explore the effects of stress and anxiety caused by COVID-19 on the quality of sleep and life in HCWs, including physicians, nurses, and other healthcare staff. In this global study, we asked 1,210 HCWs (620 and 590 volunteers from Iran and European countries, including Germany, the Netherlands, and Italy, respectively), who age 21-70, to participate in the test. Several measures of COVID-related stress, anxiety, sleep, and life quality, including the 12-item General Health Questionnaire (GHQ-12), Fear of COVID-19 scale (FCV-19S), Beck Anxiety Inventory (BAI), the Pittsburgh Sleep Quality Index (PSQI), and World Health Organization Quality of Life-BREF (WHOQOL-BREF) are recorded. Results: Volunteers reported high rates of stress and anxiety and poor sleep quality as well as lower quality of life. The correlation analysis between the measures is reported. According to the results, regardless of the location, HCWs, predominantly female nurses, developed anxiety and stress symptoms which consequently resulted in lower sleep and life quality. Both for Iranian and the European HCWs, significant differences existed between nurses and the other two groups, with the p-values equal to 0.0357 and 0.0429 for GHQ-12, 0.0368, and 0.714 for BAI measure. Even though nurses reported the most stress, anxiety, fear of COVID-19, lower quality of life and sleep in both countries, and also an increase in other measures as well, there existed no statistically significant difference in FCV-19S, PSQI, and WHOQOL-BREF. Discussion: This study helps to expand our knowledge the effects of pandemics on HCWs and also for healthcare management to predict HCW's mental health conditions in similar situations.


Assuntos
COVID-19 , Angústia Psicológica , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Qualidade do Sono , Qualidade de Vida , Pandemias , Irã (Geográfico)/epidemiologia , Estudos Transversais , COVID-19/epidemiologia , Pessoal de Saúde , Sono
5.
J Hazard Mater ; 434: 128780, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460992

RESUMO

Water supplies contaminated with heavy metals are a worldwide concern. MXenes have properties that make them attractive for the removal of metal ions from water. This work presents a simple one-step method of Ti3C2Tx carboxylation that involves the use of a chelating agent with a linear structure, providing strong carboxylic acid groups with high mobility. The carboxylation decreases the zeta-potential of Ti3C2Tx by ~16 to ~18 mV over a pH range of 2.0-8.5 and improves Ti3C2Tx stability in the presence of molecular oxygen. pH in the range of 2-6 has a negligible effect on the adsorption capacity of Ti3C2Tx and COOH-Ti3C2Tx. Compared to Ti3C2Tx, COOH-Ti3C2Tx has a slightly higher and much faster mercury uptake, and the concentration of mercury ions leached out from COOH-Ti3C2Tx is lower. For both Ti3C2Tx and COOH-Ti3C2Tx, the leached mercury ion concentration is far below the U.S.-EPA maximum level. At an initial Hg2+ concentration of 50 ppm and pH of 6, COOH-Ti3C2Tx has the equilibrium adsorption capacity of 499.7 mg/g and removes 95% of Hg2+ in less than 1 min. Moreover, it has an equilibrium time of 5 min, which is significantly shorter than that of Ti3C2Tx (~ 60 min). Finally, its mercury-ion uptake capacity is higher than commercially available adsorbents reported in the literature. Its mercury removal is mainly via chemisorption and monolayer adsorption.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Adsorção , Ácidos Carboxílicos , Concentração de Íons de Hidrogênio , Íons , Cinética , Mercúrio/análise , Titânio , Poluentes Químicos da Água/química
6.
ACS Omega ; 6(17): 11103-11112, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056265

RESUMO

The excellent conductivity and versatile surface chemistry of MXenes render these nanomaterials attractive for sensor applications. This mini-review puts recent advances in MXene-based sensors into perspective and provides prospects for the area. It describes the attractive properties and the working principles of MXene-based sensors fabricated from a MXene/polymer nanocomposite or a pristine MXene. The importance of surface modification of MXenes to improve their affinity for polymers and to develop self-healing and durable sensors is delineated. Several novel sensor fabrication methods and their challenges are discussed. Emerging applications of MXene-based sensors including moisture, motion, gas, and humidity detection as well as pressure distribution mapping are critically reviewed. Potential applications of MXene-based sensors in the food industry to monitor food materials and production plants are highlighted.

7.
ACS Appl Mater Interfaces ; 12(3): 3984-3992, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31874026

RESUMO

Sustainable and energy-efficient molecular separation requires membranes with high gas permeability and selectivity. This work reports excellent CO2 separation performance of self-standing and thin-film mixed matrix membranes (MMMs) fabricated by embedding 2D Ti3C2Tx MXene nanosheets in Pebax-1657. The CO2/N2 and CO2/H2 separation performances of the free-standing membranes are above Robeson's upper bounds, and the performances of the thin-film composite (TFC) membranes are in the target area for cost-efficient CO2 capture. Characterization and molecular dynamics simulation results suggest that the superior performances of the Pebax-Ti3C2Tx membranes are due to the formation of hydrogen bonds between Ti3C2Tx and Pebax chains, leading to the creation of the well-formed galleries of Ti3C2Tx nanosheets in the hard segments of the Pebax. The interfacial interactions and selective Ti3C2Tx nanochannels enable fast and selective CO2 transport. Enhancement of the transport properties of Pebax-2533 and polyurethane when embedded with Ti3C2Tx further supports these findings. The ease of fabrication and high separation performance of the new TFC membranes point to their great potential for energy-efficient CO2 separation with the low cost of $29/ton separated CO2.

8.
ACS Appl Mater Interfaces ; 10(49): 42967-42978, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30411881

RESUMO

Thin-film composite (TFC) membranes still suffer from fouling and biofouling. In this work, by incorporating a graphene oxide (GO)-silver-based metal-organic framework (Ag-MOF) into the TFC selective layer, we synthesized a thin-film nanocomposite (TFN) membrane that has notably improved anti-biofouling and antifouling properties. The TFN membrane has a more negative surface charge, higher hydrophilicity, and higher water permeability compared with the TFC membrane. Fluorescence imaging revealed that the GO-Ag-MOF TFN membrane kills Escherichia (E.) coli more than the Ag-MOF TFN, GO TFN, and pristine TFC membranes by 16, 30, and 92%, respectively. Forward osmosis experiments with E. coli and sodium alginate suspensions showed that the GO-Ag-MOF TFN membrane by far has the lowest water flux reduction among the four membranes, proving the exceptional anti-biofouling and antifouling properties of the GO-Ag-MOF TFN membrane.

9.
Environ Sci Technol ; 52(9): 5246-5258, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589940

RESUMO

This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.


Assuntos
Anti-Infecciosos , Nanopartículas , Purificação da Água , Membranas Artificiais , Osmose , Espectroscopia de Infravermelho com Transformada de Fourier
10.
ACS Omega ; 3(12): 17439-17446, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458349

RESUMO

Poly(vinyl chloride) (PVC)/SiO2 nanocomposite hollow-fiber membranes with different nano-SiO2 particle loadings (0-5 wt %) were fabricated using the dry-jet wet-spinning technique. Effects of SiO2 nanoparticles on the morphology of the prepared hollow-fiber membranes were investigated using scanning electron microscopy. Transport and antifouling properties of the fabricated membranes were evaluated by conducting pure-water permeation, solute rejection, and fouling resistance experiments. These studies indicated that incorporating silica nanoparticles into the PVC matrix during phase inversion lowers the hydraulic resistance through the membrane and narrows the selective membrane pores. Moreover, the nanocomposite membranes showed better antifouling properties compared to the pristine membrane during the ultrafiltration of a milk solution because of improved hydrophilicity and uniform dispersion of the nanoparticles. This work indicates that embedding silica nanoparticles into the PVC matrix is a promising method for producing cost-effective hollow-fiber ultrafiltration membranes with superior transport and antifouling properties.

11.
ChemSusChem ; 11(2): 472-482, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29106054

RESUMO

In addition to possessing excellent chemical, mechanical, and thermal stability, polyimides and polyetherimides have excellent solubility in many solvents, which renders them suitable for membrane preparation. Two new monomers [a pentiptycene-based dianhydride (PPDAn) and a pentiptycene imide-containing diamine (PPImDA)] and a pentiptycene-based polyimide [PPImDA-4,4'-hexafluoroisopropylidene diphthalic anhydride (PPImDA-6FDA)] have been synthesized and characterized by FTIR and 1 H NMR spectroscopy, gel-permeation chromatography, mass spectrometry, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry, BET surface area, and X-ray diffraction. High-molecular-weight PPImDA-6FDA has remarkable thermal stability and excellent solubility in common organic solvents. It also has an extraordinarily high fractional free volume (0.233) owing to the presence of -C(CF3 )2 - units, the rigid diamine, and the pentiptycene moiety in the polymer structure. It has high CO2 permeability (812 Barrer) owing to poor chain packing, which is caused by the fact that its rigid groups veil the influence of the ethereal oxygen groups in its backbone. It has the highest CO2 permeability among all reported pentiptycene-containing polymers (about six times higher than that of the most permeable one) without sacrificing selectivity. The high free volume, good microporosity, high solubility in many solvents, and remarkable thermal stability of PPImDA-6FDA point to the great potential of this polymer for CO2 removal.


Assuntos
Anidridos/química , Antracenos/química , Dióxido de Carbono/isolamento & purificação , Membranas Artificiais , Polímeros/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Gases/química , Permeabilidade , Porosidade , Solubilidade , Análise Espectral/métodos , Termogravimetria , Difração de Raios X
12.
Beilstein J Nanotechnol ; 8: 1266-1276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685127

RESUMO

Polyaniline (PANI) is synthesized via oxidative chemical vapor deposition (oCVD) using aniline as monomer and antimony pentachloride as oxidant. Microscopy and spectroscopy indicate that oCVD processing conditions influence the PANI film chemistry, oxidation, and doping level. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) indicate that a substrate temperature of 90 °C is needed to minimize the formation of oligomers during polymerization. Lower substrate temperatures, such as 25 °C, lead to a film that mostly includes oligomers. Increasing the oxidant flowrate to nearly match the monomer flowrate favors the deposition of PANI in the emeraldine state, and varying the oxidant flowrate can directly influence the oxidation state of PANI. Changing the reactor pressure from 700 to 35 mTorr does not have a significant effect on the deposited film chemistry, indicating that the oCVD PANI process is not concentration dependent. This work shows that oCVD can be used for depositing PANI and for effectively controlling the chemical state of PANI.

13.
Environ Sci Technol ; 51(10): 5511-5522, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414439

RESUMO

This work investigates the use of a silver-based metal-organic framework (MOF) for mitigating biofouling in forward-osmosis thin-film composite (TFC) membranes. This is the first study of the use of MOFs for biofouling control in membranes. MOF nanocrystals were immobilized in the active layer of the membranes via dispersion in the organic solution used for interfacial polymerization. Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) characterization results showed the presence of the MOF nanocrystals in the active layer of the membranes. The immobilization improved the membrane active layer in terms of hydrophilicity and transport properties without adversely affecting the selectivity. It imparted antibacterial activity to the membranes; the number of live bacteria attached to the membrane surface was over 90% less than that of control membranes. Additionally, the MOF nanocrystals provided biocidal activity that lasted for 6 months. The immobilization improved biofouling resistance in the membranes, whose flux had a decline of 8% after 24 h of operation in biofouling experiments, while that of the control membranes had a greater decline of ∼21%. The better biofouling resistance is due to simultaneous improvement of antiadhesive and antimicrobial properties of the membranes. Fluorescence microscopy and FE-SEM indicated simultaneous improvement in antiadhesive and antimicrobial properties of the TFN membranes, resulting in limited biofilm formation.


Assuntos
Incrustação Biológica , Espectroscopia Fotoeletrônica , Membranas Artificiais , Osmose , Prata
14.
Phys Chem Chem Phys ; 19(4): 2981-2989, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079224

RESUMO

This work deals with the fabrication and evaluation of color-changing dye-sensitized solar cells (DSSCs) that include N-propanoic acid-functionalized spiropyrans and spirooxazines as sensitizing dyes. We investigated the photophysical properties of these compounds in various solvents and pH conditions using UV-Vis spectroscopy, and their behavior on TiO2 photoanode surfaces using a combination of UV-Vis and FT-IR. Their performance as sensitizing dyes for DSSCs was also analyzed. This study revealed a number of unique properties for this class of compounds that affect their performance as both photochromic compounds and DSSC sensitizers, which allow for future creation of efficient photochromic DSSCs.

15.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 12): 1734-1738, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980819

RESUMO

The lattice of 5,7,12,14-tetra-hydro-5,14:7,12-bis-([1,2]benzeno)-penta-cene-6,13-dione, C34H20O2, at 173 K has triclinic (P-1) symmetry and crystallizes with four independent half-mol-ecules in the asymmetric unit. Each mol-ecule is generated from a C17H10O substructure through an inversion center at the centroid of the central quinone ring, generating a wide H-shaped mol-ecule, with a dihedral angle between the mean planes of the terminal benzene rings in each of the two symmetry-related pairs over the four mol-ecules of 68.6 (1) (A), 65.5 (4) (B), 62.3 (9) (C), and 65.8 (8)° (D), an average of 65.6 (1)°. This compound has applications in gas-separation membranes constructed from polymers of intrinsic microporosity (PIM). The title compound is a product of a double Diels-Alder reaction between anthracene and p-benzo-quinone followed by de-hydrogenation. It has also been characterized by cyclic voltammetry and rotating disc electrode polarography, FT-IR, high resolution mass spectrometry, elemental analysis, and 1H NMR.

16.
J Phys Chem A ; 118(40): 9310-8, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25188223

RESUMO

A spin-forbidden reaction is a reaction in which the total electronic spin-state changes. The standard transition-state theory that assumes a reaction occurs on a single potential energy surface with spin-conservation cannot be applied to a spin-forbidden reaction directly. In this work, we derive the crossing coefficient based on the Wentzel-Kramers-Brillouin (WKB) theory to quantify the effect of intersystem crossing on the kinetics of spin-forbidden reactions. Acrylates and methacrylates, by themselves, can generate free radicals that initiate polymerization at temperatures above 120 °C. Previous studies suggest that a triplet diradical is a key intermediate in the self-initiation. The formation of a triplet diradical from two closed-shell monomer molecules is a spin-forbidden reaction. This study provides a quantitative analysis of singlet-triplet spin crossover of diradical species in self-initiation of acrylates and methacrylates, taking into account the effect of intersystem crossing. The concept of crossing control is introduced and demonstrated computationally to be a new likely route to generate monoradicals via monomer self-initiation in high temperature polymerization.

17.
J Phys Chem A ; 118(29): 5474-87, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24971646

RESUMO

This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.


Assuntos
Acrilatos/química , Teoria Quântica , Butanóis/química , Butanonas/química , Estrutura Molecular , Solventes/química , Xilenos/química
18.
J Phys Chem A ; 117(12): 2605-18, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23406348

RESUMO

This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

19.
J Phys Chem A ; 116(22): 5337-48, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22548625

RESUMO

This paper presents a systematic computational study of the mechanism of cyclohexanone-monomer co-initiation in high-temperature homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA). Previous experimental studies of spontaneous thermal homopolymerization of MA and MMA showed higher monomer conversion in the presence of cyclohexanone than xylene. However, these studies did not reveal the initiation mechanism(s) or the initiating species. To identify the initiation mechanism and the initiating species, we explore four different mechanisms, (1) Kaim, (2) Flory, (3) α-position hydrogen transfer, and (4) Mayo, using first-principles density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations. Transition-state geometries for each mechanism are determined using B3LYP/6-31G* and assessed with MP2/6-31G*. Activation energies and rate constants are calculated using transition-state theory. The harmonic oscillator approximation and tunneling corrections are applied to compute the reaction rate constants. This study indicates that α-position hydrogen transfer and Mayo mechanisms have comparable barriers and are capable of generating monoradicals for initiating polymerization of MA and MMA; these two mechanisms can cause cyclohexanone-monomer co-initiation in thermal polymerization of MA and MMA.

20.
J Phys Chem A ; 115(6): 1125-32, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21265525

RESUMO

This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dimethyl 1,2-dimethylcyclobutane-1,2-dicarboxylate and dimethyl 2-methyl-5-methylidene-hexanedioate, on the singlet surface was identified. Transition states were calculated using B3LYP/6-31G* and assessed using MP2/6-31G*. The calculated energy barriers and rate constants with different levels of theory were found to show good agreement to corresponding data obtained from laboratory experiments. The presence of a diradical intermediate on the triplet surface was identified. When MCSCF/6-31G* was used, the spin-orbit coupling constant for the singlet to triplet crossover was calculated to be 2.5 cm(-1). The mechanism of monoradical generation via a hydrogen abstraction by both triplet and singlet diradicals from a third monomer was identified to be the most likely mechanism of initiation in spontaneous polymerization of methyl methacrylate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA