Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Plant Genome ; 16(4): e20370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539632

RESUMO

Selection for more nutritious crop plants is an important goal of plant breeding to improve food quality and contribute to human health outcomes. While there are efforts to integrate genomic prediction to accelerate breeding progress, an ongoing challenge is identifying strategies to improve accuracy when predicting within biparental populations in breeding programs. We tested multiple genomic prediction methods for 12 seed fatty acid content traits in oat (Avena sativa L.), as unsaturated fatty acids are a key nutritional trait in oat. Using two well-characterized oat germplasm panels and other biparental families as training populations, we predicted family mean and individual values within families. Genomic prediction of family mean exceeded a mean accuracy of 0.40 and 0.80 using an unrelated and related germplasm panel, respectively, where the related germplasm panel outperformed prediction based on phenotypic means (0.54). Within family prediction accuracy was more variable: training on the related germplasm had higher accuracy than the unrelated panel (0.14-0.16 and 0.05-0.07, respectively), but variability between families was not easily predicted by parent relatedness, segregation of a locus detected by a genome-wide association study in the panel, or other characteristics. When using other families as training populations, prediction accuracies were comparable to the related germplasm panel (0.11-0.23), and families that had half-sib families in the training set had higher prediction accuracy than those that did not. Overall, this work provides an example of genomic prediction of family means and within biparental families for an important nutritional trait and suggests that using related germplasm panels as training populations can be effective.


Assuntos
Avena , Estudo de Associação Genômica Ampla , Avena/genética , Genômica , Melhoramento Vegetal/métodos , Sementes/genética
2.
Theor Appl Genet ; 136(3): 59, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912946

RESUMO

KEY MESSAGE: Malt for craft "all-malt" brewing can have high quality, PHS resistance, and malted in normal timeframes. Canadian style adjunct malt is associated with PHS susceptibility. Expansion of malting barley production into non-traditional growing regions and erratic weather has increased the demand for preharvest sprouting (PHS) resistant, high quality malting barley cultivars. This is hindered by the relatively unknown relationships between PHS resistance and malting quality. Here we present a three-year study of malting quality and germination at different after-ripening durations post physiological maturity. Malting quality traits alpha amylase (AA) and free amino nitrogen (FAN) and germination rate at six days post PM shared a common association with a SNP in HvMKK3 on chromosome 5H in the Seed Dormancy 2 (SD2) region responsible for PHS susceptibility. Soluble protein (SP) and soluble over total protein (S/T) both shared a common association with a marker in the SD2 region. Significant genetic correlations between PHS resistance and the malting quality traits AA, FAN, SP, S/T were detected across and within HvMKK3 allele groups. High adjunct malt quality was related to PHS susceptibility. Selection for PHS resistance led to a correlated response in malting quality traits. Results strongly suggest pleiotropy of HvMKK3 on malting quality traits and that the classic "Canadian-style" malt is caused by a PHS susceptible allele of HvMKK3. PHS susceptibility appears to benefit the production of malt intended for adjunct brewing, while PHS resistance is compatible with all-malt brewing specifications. Here we present our analysis on the effect of combining complexly inherited and correlated traits with contrasting goals to inform breeding practice in malting barley, the general principles of which can be extended to other breeding programs.


Assuntos
Hordeum , Hordeum/genética , Melhoramento Vegetal , Canadá , Fenótipo , Germinação/genética
3.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331396

RESUMO

Meiotic recombination is a source of allelic diversity, but the low frequency and biased distribution of crossovers that occur during meiosis limits the genetic variation available to plant breeders. Simulation studies previously identified that increased recombination frequency can retain more genetic variation and drive greater genetic gains than wildtype recombination. Our study was motivated by the need to define desirable recombination intervals in regions of the genome with fewer crossovers. We hypothesized that deleterious variants, which can negatively impact phenotypes and occur at higher frequencies in low recombining regions where they are linked in repulsion with favorable loci, may offer a signal for positioning shifts of recombination distributions. Genomic selection breeding simulation models based on empirical wheat data were developed to evaluate increased recombination frequency and changing recombination distribution on response to selection. Comparing high and low values for a range of simulation parameters identified that few combinations retained greater genetic variation and fewer still achieved higher genetic gain than wildtype. More recombination was associated with loss of genomic prediction accuracy, which outweighed the benefits of disrupting repulsion linkages. Irrespective of recombination frequency or distribution and deleterious variant annotation, enhanced response to selection under increased recombination required polygenic trait architecture, high heritability, an initial scenario of more repulsion than coupling linkages, and greater than 6 cycles of genomic selection. Altogether, the outcomes of this research discourage a controlled recombination approach to genomic selection in wheat as a more efficient path to retaining genetic variation and increasing genetic gains compared with existing breeding methods.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Seleção Artificial , Alelos , Ligação Genética , Seleção Genética
4.
Foods ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36076829

RESUMO

This study aimed to understand how genetics and environment influence organic winter naked barley composition and functionality, and to identify traits that might effectively categorize basic physicochemical functionality of food barley. Across three years, two locations, and 15 genotypes, genotype significantly influenced all 10 food-related traits and was the dominant influence for three. Location significantly influenced eight traits and was dominant for three. Year significantly influenced all traits but was dominant only for one. Of the interactions location * year was the most influential and was the dominant effect for two traits. For all interaction terms where genotype was a component, the effect sizes were either small or non-significant suggesting that even with low leverage traits there is the potential for genetic gain by observing trait rankings across environments. Principal component analysis identified six traits that could serve to categorize basic physicochemical functionality of food barley. These were grain protein content, beta-glucan content, flour-water batter flow, water solvent retention capacity, time to peak viscosity of cooked flour, and hardness of cooked intact grains.

5.
Plant Genome ; 15(4): e20247, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35971877

RESUMO

Prediction of trait values in plant breeding populations typically relies on assumptions about marker effect homogeneity across populations. Evidence is presented for winter malting barley (Hordeum vulgare L.) germination traits that a single, causative, large-effect gene in the Seed dormancy 1 region on Chromosome 5H, HvAlaAT1 (Qsd1), leads to heterogeneous estimated marker effects genome wide between groups of otherwise related individuals carrying different Qsd1 alleles. This led to reduced prediction accuracy across alleles when a model was trained either on individuals carrying both alleles or one allele. Several genomic prediction models were tested to increase prediction accuracy within the Qsd1 allele groups. Small gains (5-12%) in prediction accuracy were realized using structured genomic best linear unbiased predictor models when information about the Qsd1 allele was used to stratify the population. We concluded that a single large-effect locus can lead to heterogeneous marker effects in the same breeding family. Variance partitioning based on large-effect loci can be used to inform best practices in designing genomic prediction models; however, there are likely few cases for which it may be practical to do this. For malting barley, if germination traits are highly associated with malting quality traits, then similar steps should be considered for malting quality trait prediction.


Assuntos
Hordeum , Hordeum/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Melhoramento Vegetal , Fenótipo
6.
Theor Appl Genet ; 135(11): 4005-4027, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35633380

RESUMO

There is an increased demand for food-grade grains grown sustainably. Hard red winter wheat has comparative advantages for organic farm rotations due to fall soil cover, weed competition, and grain yields. However, limitations of currently available cultivars such as poor disease resistance, winter hardiness, and baking quality, challenges its adoption and use. Our goal was to develop a participatory hard red winter wheat breeding program for the US Upper Midwest involving farmers, millers, and bakers. Specifically, our goals include (1) an evaluation of genotype-by-environment interaction (GEI) and genotypic stability for both agronomic and quality traits, and (2) the development of on-farm trials as well as baking and sensory evaluations of genotypes to include farmers, millers, and bakers' perspectives in the breeding process. Selection in early generations for diseases and protein content was followed by multi-environment evaluations for agronomic, disease, and quality traits in three locations during five years, on-farm evaluations, baking trials, and sensory evaluations. GEI was substantial for most traits, but no repeatable environmental conditions were significant contributors to GEI making selection for stability a critical trait. Breeding lines had similar performance in on-station and on-farm trials compared to commercial checks, but some breeding lines were more stable than the checks for agronomic, quality traits, and baking performance. These results suggest that stable lines can be developed using a participatory breeding approach under organic management. Crop improvement explicitly targeting sustainable agriculture practices for selection with farm to table participatory perspectives are critical to achieve long-term sustainable crop production. KEY MESSAGE: We describe a hard red winter wheat breeding program focused on developing genotypes adapted to organic systems in the US Upper Midwest for high-end artisan baking quality using participatory approaches.


Assuntos
Grão Comestível , Triticum , Grão Comestível/genética , Triticum/genética , Melhoramento Vegetal
7.
Plant Genome ; 15(2): e20205, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470586

RESUMO

Plant metabolites are important traits for plant breeders seeking to improve nutrition and agronomic performance yet integrating selection for metabolomic traits can be limited by phenotyping expense and degree of genetic characterization, especially of uncommon metabolites. As such, developing generalizable genomic selection methods based on biochemical pathway biology for metabolites that are transferable across plant populations would benefit plant breeding programs. We tested genomic prediction accuracy for >600 metabolites measured by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in oat (Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite genome-wide association study (mGWAS) and selected loci to use in multikernel models that encompassed metabolome-wide mGWAS results or mGWAS from specific metabolite structures or biosynthetic pathways. Metabolite kernels developed from LC-MS metabolites in the discovery panel improved prediction accuracy of LC-MS metabolite traits in the validation panel consisting of more advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS metabolites. We ranked model performance by metabolite and found that metabolites with similar polarity had consistent rankings of models. Overall, testing biological rationales for developing kernels for genomic prediction across populations contributes to developing frameworks for plant breeding for metabolite traits.


Assuntos
Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Espectrometria de Massas/métodos , Metabolômica/métodos
8.
Theor Appl Genet ; 135(1): 217-232, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34633474

RESUMO

KEY MESSAGE: HvMKK3 alleles are temperature sensitive and are major contributors to environmental stability of preharvest sprouting in barley. Preharvest sprouting (PHS) can severely damage barley (Hordeum vulgare L.) malting quality, but PHS resistance is often negatively correlated with malting quality. Seed dormancy is closely related to PHS. Increased temperature during grain fill can decrease seed dormancy in barley, but genetic components of seed dormancy temperature sensitivity are poorly understood. Six years of PHS data were used to fit quantitative trait locus (QTL) x environment mixed models incorporating marker data from seed dormancy genes HvAlaAT1, HvGA20ox1, and HvMKK3 and weather covariates in spring and winter two-row malting barley. Variation in winter barley PHS was best modeled by average temperature range during grain fill and spring barley PHS by total precipitation during grain fill. Average high temperature during grain fill also accurately modeled PHS for both datasets. A highly non-dormant HvMKK3 allele determined baseline PHS susceptibility and HvAlaAT1 interactions with multiple HvMKK3 alleles conferred environmental sensitivity. Polygenic variation for PHS within haplotype was detected. Residual genotype and QTL by environment interaction variance indicated additional environmental and genetic factors involved in PHS. These models provide insight into genotype and environmental regulation of barley seed dormancy, a method for PHS forecasting, and a tool for breeders to improve PHS resistance.


Assuntos
Hordeum/genética , Modelos Biológicos , Locos de Características Quantitativas , Plântula/crescimento & desenvolvimento , Alelos , Interação Gene-Ambiente , Genes de Plantas , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Dormência de Plantas/genética , Plântula/genética
9.
Theor Appl Genet ; 135(1): 145-171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661695

RESUMO

KEY MESSAGE: GWAS identified eight yield-related, peak starch type of waxy and wild-type starch and 21 starch pasting property-related traits (QTLs). Prediction ability of eight GS models resulted in low to high predictability, depending on trait, heritability, and genetic architecture. Cassava is both a food and an industrial crop in Africa, South America, and Asia, but knowledge of the genes that control yield and starch pasting properties remains limited. We carried out a genome-wide association study to clarify the molecular mechanisms underlying these traits and to explore marker-based breeding approaches. We estimated the predictive ability of genomic selection (GS) using parametric, semi-parametric, and nonparametric GS models with a panel of 276 cassava genotypes from Thai Tapioca Development Institute, International Center for Tropical Agriculture, International Institute of Tropical Agriculture, and other breeding programs. The cassava panel was genotyped via genotyping-by-sequencing, and 89,934 single-nucleotide polymorphism (SNP) markers were identified. A total of 31 SNPs associated with yield, starch type, and starch properties traits were detected by the fixed and random model circulating probability unification (FarmCPU), Bayesian-information and linkage-disequilibrium iteratively nested keyway and compressed mixed linear model, respectively. GS models were developed, and forward predictabilities using all the prediction methods resulted in values of - 0.001-0.71 for the four yield-related traits and 0.33-0.82 for the seven starch pasting property traits. This study provides additional insight into the genetic architecture of these important traits for the development of markers that could be used in cassava breeding programs.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Manihot/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Grão Comestível , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Manihot/crescimento & desenvolvimento
10.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893823

RESUMO

Plant breeding strategies to optimize metabolite profiles are necessary to develop health-promoting food crops. In oats (Avena sativa L.), seed metabolites are of interest for their antioxidant properties, yet have not been a direct target of selection in breeding. In a diverse oat germplasm panel spanning a century of breeding, we investigated the degree of variation of these specialized metabolites and how it has been molded by selection for other traits, like yield components. We also ask if these patterns of variation persist in modern breeding pools. Integrating genomic, transcriptomic, metabolomic, and phenotypic analyses for three types of seed specialized metabolites-avenanthramides, avenacins, and avenacosides-we found reduced heritable genetic variation in modern germplasm compared with diverse germplasm, in part due to increased seed size associated with more intensive breeding. Specifically, we found that abundance of avenanthramides increases with seed size, but additional variation is attributable to expression of biosynthetic enzymes. In contrast, avenacoside abundance decreases with seed size and plant breeding intensity. In addition, these different specialized metabolites do not share large-effect loci. Overall, we show that increased seed size associated with intensive plant breeding has uneven effects on the oat seed metabolome, but variation also exists independently of seed size to use in plant breeding. This work broadly contributes to our understanding of how plant breeding has influenced plant traits and tradeoffs between traits (like growth and defense) and the genetic bases of these shifts.


Assuntos
Avena , Melhoramento Vegetal , Avena/genética , Avena/metabolismo , Grão Comestível , Metabolômica , Sementes/genética , Sementes/metabolismo
11.
BMC Genomics ; 22(1): 900, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911435

RESUMO

BACKGROUND: Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. RESULTS: Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. CONCLUSIONS: Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Genótipo , Dormência de Plantas , Triticum/genética
12.
Theor Appl Genet ; 134(12): 4043-4054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643760

RESUMO

KEY MESSAGE: Integration of multi-omics data improved prediction accuracies of oat agronomic and seed nutritional traits in multi-environment trials and distantly related populations in addition to the single-environment prediction. Multi-omics prediction has been shown to be superior to genomic prediction with genome-wide DNA-based genetic markers (G) for predicting phenotypes. However, most of the existing studies were based on historical datasets from one environment; therefore, they were unable to evaluate the efficiency of multi-omics prediction in multi-environment trials and distantly related populations. To fill those gaps, we designed a systematic experiment to collect omics data and evaluate 17 traits in two oat breeding populations planted in single and multiple environments. In the single-environment trial, transcriptomic BLUP (T), metabolomic BLUP (M), G + T, G + M, and G + T + M models showed greater prediction accuracy than GBLUP for 5, 10, 11, 17, and 17 traits, respectively, and metabolites generally performed better than transcripts when combined with SNPs. In the multi-environment trial, multi-trait models with omics data outperformed both counterpart multi-trait GBLUP models and single-environment omics models, and the highest prediction accuracy was achieved when modeling genetic covariance as an unstructured covariance model. We also demonstrated that omics data can be used to prioritize loci from one population with omics data to improve genomic prediction in a distantly related population using a two-kernel linear model that accommodated both likely casual loci with large-effect and loci that explain little or no phenotypic variance. We propose that the two-kernel linear model is superior to most genomic prediction models that assume each variant is equally likely to affect the trait and can be used to improve prediction accuracy for any trait with prior knowledge of genetic architecture.


Assuntos
Avena/genética , Modelos Genéticos , Valor Nutritivo , Sementes/química , Avena/química , Marcadores Genéticos , Metaboloma , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Transcriptoma
13.
Foods ; 10(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681528

RESUMO

Most oat grains destined for human consumption must possess the ability to pass through an industrial de-hulling process with minimal breakage and waste. Uniform grain size and a high groat to hull ratio are desirable traits related to milling performance. The purpose of this study was to characterize the genetic architecture of traits related to milling quality by identifying quantitative trait loci (QTL) contributing to variation among a diverse collection of elite and foundational spring oat lines important to North American oat breeding programs. A total of 501 lines from the Collaborative Oat Research Enterprise (CORE) panel were evaluated for genome-wide association with 6 key milling traits. Traits were evaluated in 13 location years. Associations for 36,315 markers were evaluated for trait means across and within location years, as well as trait variance across location years, which was used to assess trait stability. Fifty-seven QTL influencing one or more of the milling quality related traits were identified, with fourteen QTL mapped influencing mean and variance across location years. The most prominent QTL was Qkernel.CORE.4D on chromosome 4D at approximately 212 cM, which influenced the mean levels of all traits. QTL were identified that influenced trait variance but not mean, trait mean only and both.

14.
Plant Genome ; 14(3): e20138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482639

RESUMO

New breeding programs are faced with many challenges including evaluation of unknown germplasm, initiation of breeding populations that will satisfy short- and long-term breeding goals, and implementation of efficient phenotyping strategies for multiple traits. Genomic selection (GS) is a potentially valuable tool for recently established breeding programs to quickly accelerate genetic gain. Genomic selection on selection index (SI) values may increase gain over phenotypic selection but empirical studies remain limited. We compared gain in overall SI value for height, heading date, preharvest sprouting (PHS) resistance, and spot blotch resistance and component traits in two cycles of GS with one round of phenotypic selection (PS) in two-row spring malting barley (Hordeum vulgare L.). Higher realized gain for SI value, height, and PHS was observed with GS compared with PS but GS did not result in significant gain for heading date and spot blotch. Genetic variances for height and heading date, which had small index weights, were not reduced with GS but variances were substantially reduced for heavily weighted PHS and correlated seed germination traits. Inbreeding was increased by GS compared with PS but restricted mating of high breeding value individuals limited potential inbreeding. Our results indicate GS is a useful method to improve selection on index values with different weights.


Assuntos
Hordeum , Genoma , Genômica/métodos , Hordeum/genética , Melhoramento Vegetal/métodos , Seleção Genética
15.
Plant Genome ; 14(2): e20106, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197040

RESUMO

Positional-based cloning is a foundational method for understanding the genes and gene networks that control valuable agronomic traits such as grain yield components. In this study, we sought to positionally clone the causal genetic variant of a 1000-grain weight (TGW) quantitative trait loci (QTL) on wheat (Triticum aestivum L.) chromosome arm 5AL. We developed heterogenous inbred families (HIFs) (>5,000 plants) for enhanced genotypic resolution and fine-mapped the QTL to a 10-Mbp region. The transcriptome of developing grains from positive and negative control HIF haplotypes revealed presence-absence chromosome arm 5AS structural variation and unexpectedly no differential expression of genes within the chromosome arm 5AL candidate region. Evaluation of genomic, transcriptomic, and phenotypic data, and predicted function of genes, identified that the 5AL QTL was the result of strong linkage disequilibrium (LD) with chromosome arm 5AS presence or absence (HIF r2 = 0.91). Structural variation is common in wheat, and our results highlight that the redundant polyploid genome's masking of such variation is a significant barrier to positional cloning. We propose recommendations for more efficient and robust detection of structural variation, including transitioning from a single nucleotide polymorphism (SNP) to a haplotype-based approach to identify positional cloning targets. We also present nine candidate genes for grain yield components based on chromosome arm 5AS presence or absence, which may unveil hidden variation of homoeolog dosage-dependent genes across the group five chromosome short arms. Taken together, our discovery demonstrates the phenotypic resiliency of polyploid genomic structural variation and highlights a considerable challenge to routine positional cloning in wheat.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Cromossomos , Clonagem Molecular , Triticum/genética
16.
Plant J ; 108(4): 960-976, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34218494

RESUMO

The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs). Here, we present an evaluation of 92 RILs in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative Mapping Population [ITMI/MP]) using newly generated phenotypic data in 3-year experiments (2015), older phenotypic data (1997-2009), and newly created single nucleotide polymorphism (SNP) marker data based on 92 of the original RILs to search for novel and stable QTLs. Our analyses of more than 15 unique traits observed in multiple experiments included analyses of 46 traits in three environments in the USA, 69 traits in eight environments in Germany, 149 traits in 10 environments in Russia, and 28 traits in four environments in India (292 traits in 25 environments) with 7584 SNPs (292 × 7584 = 2 214 528 data points). A total of 874 QTLs were detected with limit of detection (LOD) scores of 2.01-3.0 and 432 QTLs were detected with LOD > 3.0. Moreover, 769 QTLs could be assigned to 183 clusters based on the common markers and relative proximity of related QTLs, indicating gene-rich regions throughout the A, B, and D genomes of common wheat. This upgraded genotype-phenotype information of ITMI/MP can assist breeders and geneticists who can make crosses with suitable RILs to improve or investigate traits of interest.


Assuntos
Marcadores Genéticos/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Produtos Agrícolas , Cruzamentos Genéticos , Grão Comestível/genética , Genótipo , Endogamia , Família Multigênica , Fenótipo
17.
Front Nutr ; 8: 667370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124122

RESUMO

Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population. This has led to studies of their structure, inhibitory properties, genetics, control of expression, behavior during processing, effects on human adverse reactions to wheat and, most recently, strategies to modify their expression in the plant using gene editing. We therefore present an integrated account of this range of research, identifying inconsistencies, and gaps in our knowledge and identifying future research needs. Note  This paper is the outcome of an invited international ATI expert meeting held in Amsterdam, February 3-5 2020.

18.
Plant Genome ; 14(2): e20105, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145776

RESUMO

Many of the major stem rust resistance genes deployed in commercial wheat (Triticum spp.) cultivars and breeding lines become ineffective over time because of the continuous emergence of virulent races. A genome-wide association study (GWAS) was conducted using 26,439 single nucleotide polymorphism (SNP) markers and 280 durum wheat [Triticum turgidum L. subsp. Durum (Desf.) Husnot] lines from CIMMYT to identify genomic regions associated with seedling resistance to races TTKSK, TKTTF, JRCQC, and TTRTF and field resistance to TKTTF and JRCQC. The phenotypic data analysis across environments revealed 61-91 and 59-77% of phenotypic variation was explained by the genotypic component for seedling and adult plant response of lines, respectively. For seedling resistance, mixed linear model (MLM) identified eight novel and nine previously reported quantitative trait loci (QTL) while a fixed and random model circulating probability unification (FarmCPU) detected 12 novel and eight previously reported QTL. For field resistance, MLM identified 12 novel and seven previously reported loci while FarmCPU identified seven novel and nine previously reported loci. The regions of Sr7a, Sr8155B1, Sr11, alleles of Sr13, Sr17, Sr22/Sr25, and Sr49 were identified. Novel loci on chromosomes 3B, 4A, 6A, 6B, 7A, and 7B could be used as sources of resistance to the races virulent on durum wheat. Two large-effect markers on chromosome 6A could potentially be used to differentiate resistant haplotypes of Sr13 (R1 and R3). Allelism tests for Sr13, breaking the deleterious effect associated with Sr22/Sr25 and retaining the resistance allele at the Sr49 locus, are needed to protect future varieties from emerging races.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plântula/genética , Triticum/genética
19.
Front Genet ; 12: 643733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868378

RESUMO

The observable phenotype is the manifestation of information that is passed along different organization levels (transcriptional, translational, and metabolic) of a biological system. The widespread use of various omic technologies (RNA-sequencing, metabolomics, etc.) has provided plant genetics and breeders with a wealth of information on pertinent intermediate molecular processes that may help explain variation in conventional traits such as yield, seed quality, and fitness, among others. A major challenge is effectively using these data to help predict the genetic merit of new, unobserved individuals for conventional agronomic traits. Trait-specific genomic relationship matrices (TGRMs) model the relationships between individuals using genome-wide markers (SNPs) and place greater emphasis on markers that most relevant to the trait compared to conventional genomic relationship matrices. Given that these approaches define relationships based on putative causal loci, it is expected that these approaches should improve predictions for related traits. In this study we evaluated the use of TGRMs to accommodate information on intermediate molecular phenotypes (referred to as endophenotypes) and to predict an agronomic trait, total lipid content, in oat seed. Nine fatty acids were quantified in a panel of 336 oat lines. Marker effects were estimated for each endophenotype, and were used to construct TGRMs. A multikernel TRGM model (MK-TRGM-BLUP) was used to predict total seed lipid content in an independent panel of 210 oat lines. The MK-TRGM-BLUP approach significantly improved predictions for total lipid content when compared to a conventional genomic BLUP (gBLUP) approach. Given that the MK-TGRM-BLUP approach leverages information on the nine fatty acids to predict genetic values for total lipid content in unobserved individuals, we compared the MK-TGRM-BLUP approach to a multi-trait gBLUP (MT-gBLUP) approach that jointly fits phenotypes for fatty acids and total lipid content. The MK-TGRM-BLUP approach significantly outperformed MT-gBLUP. Collectively, these results highlight the utility of using TGRM to accommodate information on endophenotypes and improve genomic prediction for a conventional agronomic trait.

20.
Trends Plant Sci ; 26(6): 631-649, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893045

RESUMO

Over the past decade, genomics-assisted breeding (GAB) has been instrumental in harnessing the potential of modern genome resources and characterizing and exploiting allelic variation for germplasm enhancement and cultivar development. Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs. Genomic breeding strategies that optimize crop genomes with accumulation of beneficial alleles and purging of deleterious alleles will be indispensable for designing future crops. In coming decades, GAB 2.0 is expected to play a crucial role in breeding more climate-smart crop cultivars with higher nutritional value in a cost-effective and timely manner.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA