Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5959-5974, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426935

RESUMO

Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.


Assuntos
Éxons , Sítios de Splice de RNA , RNA Nuclear Pequeno , Fator de Transcrição STAT3 , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Sítios de Ligação/genética , Splicing de RNA , Ligação Proteica , Sequência de Bases , Células HeLa
2.
J Clin Immunol ; 43(8): 1974-1991, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37620742

RESUMO

Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare and life-threatening condition characterized by recurrent localized edema. We conducted a systematic screening of SERPING1 defects in a cohort of 207 Czech patients from 85 families with C1-INH-HAE. Our workflow involved a combined strategy of sequencing extended to UTR and deep intronic regions, advanced in silico prediction tools, and mRNA-based functional assays. This approach allowed us to detect a causal variant in all families except one and to identify a total of 56 different variants, including 5 novel variants that are likely to be causal. We further investigated the functional impact of two splicing variants, namely c.550 + 3A > C and c.686-7C > G using minigene assays and RT-PCR mRNA analysis. Notably, our cohort showed a considerably higher proportion of detected splicing variants compared to other central European populations and the LOVD database. Moreover, our findings revealed a significant association between HAE type 1 missense variants and a delayed HAE onset when compared to null variants. We also observed a significant correlation between the presence of the SERPING1 variant c.-21 T > C in the trans position to causal variants and the frequency of attacks per year, disease onset, as well as Clinical severity score. Overall, our study provides new insights into the genetic landscape of C1-INH-HAE in the Czech population, including the identification of novel variants and a better understanding of genotype-phenotype correlations. Our findings also highlight the importance of comprehensive screening strategies and functional analyses in improving the C1-INH-HAE diagnosis and management.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Humanos , Proteína Inibidora do Complemento C1/genética , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/epidemiologia , Angioedemas Hereditários/genética , República Tcheca/epidemiologia , Splicing de RNA , RNA Mensageiro
3.
Front Genet ; 14: 1123914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470035

RESUMO

Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.

4.
Mol Biol Rep ; 50(6): 4975-4982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086298

RESUMO

BACKGROUND: The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS: The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS: PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.


Assuntos
Angioedemas Hereditários , Monócitos , Humanos , Processamento Alternativo/genética , Angioedemas Hereditários/genética , Angioedemas Hereditários/patologia , Leucócitos , Macrófagos/patologia
5.
Genet Med ; 24(2): 293-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906454

RESUMO

PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH.


Assuntos
Genoma Humano , Hiperlipoproteinemia Tipo II , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Hiperlipoproteinemia Tipo II/genética
6.
Cell Mol Life Sci ; 78(21-22): 6979-6993, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34596691

RESUMO

Among alternative splicing events in the human transcriptome, tandem NAGNAG acceptor splice sites represent an appreciable proportion. Both proximal and distal NAG can be used to produce two splicing isoforms differing by three nucleotides. In some cases, the upstream exon can be alternatively spliced as well, which further increases the number of possible transcripts. In this study, we showed that NAG choice in tandem splice site depends considerably not only on the concerned acceptor, but also on the upstream donor splice site sequence. Using an extensive set of experiments with systematically modified two-exonic minigene systems of AFAP1L2 or CSTD gene, we recognized the third and fifth intronic upstream donor splice site position and the tandem acceptor splice site region spanning from -10 to +2, including NAGNAG itself, as the main drivers. In addition, competition between different branch points and their composition were also shown to play a significant role in NAG choice. All these nucleotide effects appeared almost additive, which explained the high variability in proximal versus distal NAG usage.


Assuntos
Processamento Alternativo/genética , Nucleotídeos/genética , Sítios de Splice de RNA/genética , Sequências de Repetição em Tandem/genética , Linhagem Celular Tumoral , Éxons/genética , Células HeLa , Humanos , Íntrons/genética
7.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911621

RESUMO

Acceptor splice site recognition (3' splice site: 3'ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3'ss, of which U2AF35 has a dual function: (i) It binds to the intron-exon border of some 3'ss and (ii) mediates enhancer-binding splicing activators' interactions with the spliceosome. Alternative mechanisms for 3'ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3'ss recognition where the intron-exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3'ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3'ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons' inclusion. Most probably, both factors stochastically bind the 3'ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3'ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants' effects on splicing.


Assuntos
Sítios de Splice de RNA/genética , Sítios de Splice de RNA/fisiologia , Splicing de RNA/fisiologia , Processamento Alternativo/genética , Sequência de Bases/genética , Éxons/genética , Células HeLa , Humanos , Íntrons/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/metabolismo
8.
J Clin Immunol ; 40(3): 435-446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31982983

RESUMO

PURPOSE: Hereditary angioedema (HAE) is a rare autosomal dominant life-threatening disease characterized by low levels of C1 inhibitor (type I HAE) or normal levels of ineffective C1 inhibitor (type II HAE), typically occurring as a consequence of a SERPING1 mutation. In some cases, a causal mutation remains undetected after using a standard molecular genetic analysis. RESULTS: Here we show a long methodological way to the final discovery of c.1029 + 384A > G, a novel deep intronic mutation in intron 6 which is responsible for HAE type I in a large family and has not been identified by a conventional diagnostic approach. This mutation results in de novo donor splice site creation and subsequent pseudoexon inclusion, the mechanism firstly described to occur in SERPING1 in this study. We additionally discovered that the proximal part of intron 6 is a region potentially prone to pseudoexon-activating mutations, since natural alternative exons and additional cryptic sites occur therein. Indeed, we confirmed the existence of at least two different alternative exons in this region not described previously. CONCLUSIONS: In conclusion, our results suggest that detecting aberrant transcripts, which are often low abundant because of nonsense-mediated decay, requires a modified methodological approach. We suggest SERPING1 intron 6 sequencing and/or tailored mRNA analysis to be routinely used in HAE patients with no mutation identified in the coding sequence.


Assuntos
Proteína Inibidora do Complemento C1/genética , Análise Mutacional de DNA/métodos , Éxons/genética , Angioedema Hereditário Tipos I e II/genética , Íntrons/genética , Mutação/genética , Sítios de Splice de RNA/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Processamento de Proteína/genética , Adulto Jovem
9.
J Clin Med Res ; 11(12): 789-797, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31803323

RESUMO

BACKGROUND: Complex cardiovascular procedures may initiate a systemic inflammatory response syndrome (SIRS) with a massive cytokine release, which is involved in postoperative myocardial injury. Intraoperative cytokine hemoadsorption (HA) mitigates the inflammatory response. Micro ribonucleic acids (miRNAs) are emerging as a marker of myocardial injury. METHODS: This study evaluated if intraoperative cytokine reduction by HA modulates SIRS and affects myocardial injury as measured by miRNA-126, 223 and miRNA-1, 133a, respectively. Twenty-eight patients were assigned into HA (n = 15) and control (C) (n = 13) groups. HA was performed by integrating CytoSorb™ into the extracorporeal circuit. RESULTS: MiRNA-133a plasma levels were increased postoperatively in both groups but were much higher in the HA group than in the C group at 3 h (P = 0.037) and 18 h (P = 0.017) after reperfusion. MiRNA-1 and miRNA-223 plasma levels were significantly increased postoperatively, but did not differ between groups. The vascular miRNA-126 was not affected. CONCLUSION: Intraoperative cytokine HA in cardiovascular operations increased the plasma levels of miRNA-133a, suggesting higher myocardial injury.

10.
RNA Biol ; 16(10): 1364-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213135

RESUMO

Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.


Assuntos
Processamento Alternativo , Éxons , Mutação , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Linhagem Celular , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Conformação de Ácido Nucleico , Ligação Proteica , Sítios de Splice de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
11.
Mediators Inflamm ; 2019: 9515628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236065

RESUMO

Neutrophils impact on processes preceding the formation of bradykinin, a major swelling mediator in hereditary angioedema (HAE), yet their potential role in HAE pathogenesis has not been sufficiently studied. We assessed the relative mRNA expression of 10 genes related to neutrophil activation using RNA extracted from the peripheral blood neutrophils of 23 HAE patients in a symptom-free period and 39 healthy donors. Increased relative mRNA expression levels of CD274, IL1B, IL1RN, IL8, MMP9, and TLR4, together with a lack in their mutual correlations detected in HAE patients compared to healthy controls, suggested a preactivated state and dysregulation of patients' neutrophils. Patients' neutrophil-alerted state was further supported by increased CD11b, decreased CD16 plasma membrane deposition, and increased relative CD274+ and CD87+ neutrophil counts, but not by increased neutrophil elastase or myeloperoxidase plasma levels. As CD274 mediates inhibitory signals to different immune cells, neutrophils were cocultured with T-cells/PBMC. The decrease in CD25+ and IFN-γ + T-cell/PBMC ratio in patients indicated the patients' neutrophil suppressive functions. In summary, the results showed neutrophils' alerted state and dysregulation at the transcript level in patients with HAE types I and II even in a symptom-free period, which might make them more susceptible to edema formation. Neutrophils' T-cell suppressive capacity in HAE patients needs to be further investigated.


Assuntos
Angioedema Hereditário Tipos I e II/metabolismo , Neutrófilos/metabolismo , Adolescente , Adulto , Antígeno B7-H1/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Criança , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Elastase Pancreática/sangue , Peroxidase/sangue , RNA Mensageiro , Receptores de IgG/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
12.
DNA Res ; 26(4): 341-352, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230075

RESUMO

Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Mutação , Motivos de Nucleotídeos , Ilhas de CpG , DNA/genética , Humanos
13.
Mol Biol Rep ; 46(3): 2877-2884, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30840204

RESUMO

Pre-mRNA splicing is an essential step in gene expression, when introns are removed and exons joined by the complex of proteins called spliceosome. Correct splicing requires a precise exon/intron junction definition, which is determined by a consensual donor and acceptor splice site at the 5' and 3' end, respectively. An acceptor splice site (3'ss) consists of highly conserved AG nucleotides in positions E-2 and E-1. These nucleotides can appear in tandem, located 3 bp from each other. Then they are referred to as NAGNAG or tandem 3'ss, which can be alternatively spliced. NAG/TAG 3'ss motif abundance is extremely low and cannot be easily explained by just a nucleotide preference in this position. We tested artificial NAG/TAG motif's potential negative effect on exon recognition using a minigene assay. Introducing the NAG/TAG motif into seven different exons revealed no general negative effect on exon recognition. The only observed effect was the partial use of the newly formed distal 3'ss. We can conclude that this motif's extremely low preference in a natural 3'ss is not a consequence of the NAG/TAG motif's negative effect on exon recognition, but more likely the result of other RNA processing aspects, such as an alternative 3'ss choice, decreased 3'ss strength, or incorporating an amber stop codon.


Assuntos
Éxons , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Processamento Alternativo , Sequência de Bases , Códon de Terminação , Células HeLa , Humanos , Íntrons , Nucleotídeos/genética , Sítios de Splice de RNA/fisiologia , Sequências de Repetição em Tandem
14.
Mol Immunol ; 107: 91-96, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30685616

RESUMO

Mutations in the C1 inhibitor (C1INH) encoding gene, SERPING1, are associated with hereditary angioedema (HAE) which manifests as recurrent submucosal and subcutaneous edema episodes. The major C1INH function is the complement system inhibition, preventing its spontaneous activation. The presented study is focused on SERPING1 exon 3, an alternative and extraordinarily long exon (499 bp). Endogenous expression analysis performed in the HepG2, human liver, and human peripheral blood cells revealed several exon 3 splicing variants alongside exon inclusion: a highly prevalent exon skipping variant and less frequent +38 and -15 variants with alternative 3' splice sites (ss) located 38 and 15 nucleotides downstream and upstream from the authentic 3' ss, respectively. An exon skipping variant introducing a premature stop codon, represented nearly one third of all splicing variants and surprisingly appeared not to be degraded by NMD. The alternative -15 3' ss was used to a small extent, although predicted to be extremely weak. Its use was shown to be independent of its strength and highly sensitive to any changes in the surrounding sequence. -15 3' ss seems to be co-regulated with the authentic 3' ss, whose use is dependent mainly on its strength and less on the presence of intronic regulatory motifs. Subtle SERPING1 exon 3 splicing regulation can contribute to overall C1INH plasma levels and HAE pathogenesis.


Assuntos
Processamento Alternativo/genética , Proteína Inibidora do Complemento C1/genética , Éxons/genética , Sítios de Splice de RNA/genética , Sequência de Bases , Núcleo Celular/genética , Células Hep G2 , Humanos , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Interferente Pequeno/metabolismo
15.
J Immunol ; 202(1): 93-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487174

RESUMO

Common variable immunodeficiency disorders (CVID) represent a group of primary immunodeficiency diseases characterized by hypogammaglobulinemia and impaired specific Ab response, resulting in recurrent infections due to dysfunctional immune response. The specific mechanisms mediating immune deficiency in CVID remain to be determined. Previous studies indicated that immune dysregulation in CVID patients is associated with chronic microbial translocation, systemic immune activation, and altered homeostasis of lymphocytic and myeloid lineages. A detailed phenotypic, functional characterization of plasma markers and immune cell populations was performed in 46 CVID patients and 44 healthy donors. CVID patients displayed significantly elevated plasma levels of a marker of neutrophil activation neutrophil gelatinase-associated lipocalin. Neutrophils from CVID patients exhibited elevated surface levels of CD11b and PD-L1 and decreased levels of CD62L, CD16, and CD80, consistent with a phenotype of activated neutrophils with suppressive properties. Neutrophils from CVID patients actively suppressed T cell activation and release of IFN-γ via the production of reactive oxygen species. Furthermore, CVID was associated with an increased frequency of low-density neutrophils (LDNs)/granulocytic myeloid-derived suppressor cells. LDN/granulocytic myeloid-derived suppressor cell frequency in CVID patients correlated with reduced T cell responsiveness. Exogenous stimulation of whole blood with bacterial LPS emulated some but not all of the phenotypic changes observed on neutrophils from CVID patients and induced neutrophil population with LDN phenotype. The presented data demonstrate that neutrophils in the blood of CVID patients acquire an activated phenotype and exert potent T cell suppressive activity. Specific targeting of myeloid cell-derived suppressor activity represents a novel potential therapeutic strategy for CVID.


Assuntos
Imunodeficiência de Variável Comum/imunologia , Granulócitos/fisiologia , Lipocalina-2/sangue , Células Supressoras Mieloides/fisiologia , Neutrófilos/fisiologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Feminino , Humanos , Tolerância Imunológica , Masculino , Pessoa de Meia-Idade , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
16.
Clin Immunol ; 180: 33-44, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28359783

RESUMO

Both variants affecting splice sites and those in splicing regulatory elements (SREs) can impair pre-mRNA splicing, eventually leading to severe diseases. Despite the availability of many prediction tools, prognosis of splicing affection is not trivial, especially when SREs are involved. Here, we present data on 92 in silico-/55 minigene-analysed variants detected in genes responsible for the primary immunodeficiencies development (namely BTK, CD40LG, IL2RG, SERPING1, STAT3, and WAS). Of 20 splicing-affecting variants, 16 affected splice site while 4 disrupted potential SRE. The presence or absence of splicing defects was confirmed in 30 of 32 blood-derived patients' RNAs. Testing prediction tools performance, splice site disruptions and creations were reliably predicted in contrast to SRE-affecting variants for which just ESRseq, ΔHZEI-scores and EX-SKIP predictions showed promising results. Next, we found an interesting pattern in cryptic splice site predictions. These results might help PID-diagnosticians and geneticists cope with potential splicing-affecting variants.


Assuntos
Síndromes de Imunodeficiência/genética , Splicing de RNA , Tirosina Quinase da Agamaglobulinemia , Criança , Pré-Escolar , Proteínas Inativadoras do Complemento 1/genética , Proteína Inibidora do Complemento C1 , Éxons , Células HeLa , Células Hep G2 , Humanos , Lactente , Subunidade gama Comum de Receptores de Interleucina/genética , Mutação , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Fator de Transcrição STAT3/genética , Células U937 , Proteína da Síndrome de Wiskott-Aldrich/genética
17.
Carbohydr Res ; 346(2): 238-42, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146813

RESUMO

Here we present an optimized procedure to generate amino acid variations at specific site(s) of proteins, followed by a simple one-step screen for mutants with the desired ß-glucosidase activity. The procedure was evaluated by introducing sequence variation into a codon specifying a non-functional variant of the catalytic nucleophile (E401) of the maize ß-glucosidase Zm-p60.1. Observed and theoretically expected frequencies of the four possible variants of the codon and the two possible phenotypes (functional and non-functional) were investigated. Deviations in codon and phenotype frequencies were expressed as a coefficient. This coefficient was then used to estimate the extent of oversampling, of the mutant library, which would be necessary to compensate for the underrepresentation of some sequences. This evaluation of the overall performance of the method allows experimentally derived parameters to be incorporated into mutant library design. This method combines the application of a well-defined distribution of variability with a reliable screening process. Thus, it facilitates the production of novel functional variants of ß-glucosidases for either fundamental studies or potential biotechnological applications.


Assuntos
Aminoácidos/química , Celulases/química , Evolução Molecular Direcionada/métodos , Aminoácidos/genética , Celulases/genética , Celulases/isolamento & purificação , Códon/química , Códon/genética , Escherichia coli/genética , Mutagênese , Zea mays/enzimologia
18.
Plant Cell ; 21(7): 2008-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19622803

RESUMO

The development and activity of the procambium and cambium, which ensure vascular tissue formation, is critical for overall plant architecture and growth. However, little is known about the molecular factors affecting the activity of vascular meristems and vascular tissue formation. Here, we show that the His kinase CYTOKININ-INDEPENDENT1 (CKI1) and the cytokinin receptors ARABIDOPSIS HISTIDINE KINASE2 (AHK2) and AHK3 are important regulators of vascular tissue development in Arabidopsis thaliana shoots. Genetic modifications of CKI1 activity in Arabidopsis cause dysfunction of the two-component signaling pathway and defects in procambial cell maintenance. CKI1 overexpression in protoplasts leads to cytokinin-independent activation of the two-component phosphorelay, and intracellular domains are responsible for the cytokinin-independent activity of CKI1. CKI1 expression is observed in vascular tissues of inflorescence stems, and CKI1 forms homodimers both in vitro and in planta. Loss-of-function ahk2 and ahk3 mutants and plants with reduced levels of endogenous cytokinins show defects in procambium proliferation and an absence of secondary growth. CKI1 overexpression partially rescues ahk2 ahk3 phenotypes in vascular tissue, while the negative mutation CKI1H405Q further accentuates mutant phenotypes. These results indicate that the cytokinin-independent activity of CKI1 and cytokinin-induced AHK2 and AHK3 are important for vascular bundle formation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Histidina Quinase , Immunoblotting , Imunoprecipitação , Brotos de Planta/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Proc Natl Acad Sci U S A ; 106(9): 3609-14, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19211794

RESUMO

Postembryonic de novo organogenesis represents an important competence evolved in plants that allows their physiological and developmental adaptation to changing environmental conditions. The phytohormones auxin and cytokinin (CK) are important regulators of the developmental fate of pluripotent plant cells. However, the molecular nature of their interaction(s) in control of plant organogenesis is largely unknown. Here, we show that CK modulates auxin-induced organogenesis (AIO) via regulation of the efflux-dependent intercellular auxin distribution. We used the hypocotyl explants-based in vitro system to study the mechanism underlying de novo organogenesis. We show that auxin, but not CK, is capable of triggering organogenesis in hypocotyl explants. The AIO is accompanied by endogenous CK production and tissue-specific activation of CK signaling. CK affects differential auxin distribution, and the CK-mediated modulation of organogenesis is simulated by inhibition of polar auxin transport. CK reduces auxin efflux from cultured tobacco cells and regulates expression of auxin efflux carriers from the PIN family in hypocotyl explants. Moreover, endogenous CK levels influence PIN transcription and are necessary to maintain intercellular auxin distribution in planta. Based on these findings, we propose a model in which auxin acts as a trigger of the organogenic processes, whose output is modulated by the endogenously produced CKs. We propose that an important mechanism of this CK action is its effect on auxin distribution via regulation of expression of auxin efflux carriers.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citocininas/farmacologia , Ácidos Indolacéticos/metabolismo , Arabidopsis/efeitos dos fármacos , Transporte Biológico , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
20.
J Exp Bot ; 59(13): 3705-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18775952

RESUMO

High concentrations of cytokinins (CKs) in the cultivation medium can induce partial photomorphogenesis in dark-grown Arabidopsis seedlings. However, no significant increases in endogenous CK levels have been found in de-etiolated mutants, suggesting that either parallel pathways are involved in the light and CK responses, or changes in the sensitivity to CKs occur during photomorphogenesis. Here it is shown that even modest increases in endogenous CK levels induced by transgenic expression of the CK biosynthetic gene, ipt, can lead to many typical features of light-induced de-etiolation, including inhibition of hypocotyl elongation and partial cotyledon opening. In addition, significant changes in expression of 37 proteins (mostly related to chloroplast biogenesis, a major element of light-induced photomorphogenesis) were detected by image and mass spectrometric analysis of two-dimensionally separated proteins. The identified chloroplast proteins were all up-regulated in response to increased CKs, and more than half are up-regulated at the transcript level during light-induced photomorphogenesis according to previously published transcriptomic data. Four of the up-regulated chloroplast proteins identified here have also been shown to be up-regulated during light-induced photomorphogenesis in previous proteomic analyses. In contrast, all differentially regulated mitochondrial proteins (the second largest group of differentially expressed proteins) were down-regulated. Changes in the levels of several tubulins are consistent with the observed morphological alterations. Further, 10 out of the 37 differentially expressed proteins detected have not been linked to either photomorphogenesis or CK action in light-grown Arabidopsis seedlings in previously published transcriptomic or proteomic analyses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Citocininas/metabolismo , Morfogênese , Proteômica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Citocininas/genética , Escuridão , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Morfogênese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA